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Abstract. Geotechnical Engineering largely focused on the complex nature of 

soils and rocks. Because this complexity creates a high level of ambiguity in the 

imitation of these materials' nature. Genetic Programming (GP) has been initially 

developed by J. Koza (1992) and then used by many researchers in different areas 

including geotechnical engineering. This paper closely reviewed the application 

of GP in some areas of geotechnical engineering identified: settlement of the shal- 

low foundation, bearing capacity of pile foundation, liquefaction assessment, es- 

timation of pore water pressure, compaction parameters (OMC & MDD), soil- 

fiber composite assessment, free swell and swell pressure, the effectiveness of 

rolling dynamic compaction, prediction of soil water characteristic curve, and 

unconfined compressive strength (UCS). GP has been getting success over the 

years, because of its ability to find the relationship between the input variable and 

predict the output variable. This paper also discusses the future scope of GP in 

some unexplored areas of geotechnical engineering. 

 
Keywords: modelling, genetic programming, geotechnical engineering. 

 

1 Introduction 
 

Geotechnical engineering deals with the study of geomaterials and their interaction with 

the environment. Soil is one of the complex engineering materials that behave non- 

linearly, exposed to environmental conditions. The heterogeneous and anisotropic na- 

ture of soil and rock is due to their origin and formation process (Shahin, 2015). This 

makes soil and rock difficult to predict in the atmosphere. In geotechnical engineering, 

the properties of soil and rock find out through various laboratory or field testing. But 

these laboratory and field testing are time-consuming and instruments are costly (Bagh- 

bani et al., 2021). Moreover, laboratory and field testing are limited to very few param- 

eters required for particular testing experiments. On the contrary, numerical methods 

virtually analyze the complex nature of the material (Baghbani et al., 2021). 

Currently, Artificial Intelligence (AI) is being used for finding various solutions to 

the problems that arise in the field of geotechnical engineering. AI can model complex 

and non-linear behavior of geotechnical material without considering the assumptions 

between the variables and the unknown. AI can create incomplete data by recognizing 

the patterns between the parameters (Shahin, 2015). There are various AI methods have 
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been used in geotechnical engineering viz- Artificial Neural Network (ANN), Deep 

Learning (DL), Fuzzy inference system (FIS), Particle Swarm Optimization (PSO), Ge- 

netic Algorithm (GA), and Genetic Programming (GP) (Sterling and Lee, 1992; Gribb 

and Gribb, 1994; Gupta et al., 2004; Javadi et al., 2006; Armaghani et al., 2014; 

Bartlewska and Strzelecki, 2018). 

This paper discusses the application of Genetic Programming (GP) in various areas 

of geotechnical engineering. GP is a simple pattern recognition method, that breeds the 

computer programs genetically to solve problems using reproduction, crossover, and 

mutation (Koza and Poli, 2005). GP works on the Darwinian principle of survival of 

the fittest computer program (Koza, 1992). This process is continued to get the final 

solution based on the termination criterion which can be either a correct solution to the 

problem (Koza, 1992) or an acceptable minimum error (Fatehnia and Amirinia, 2018). 

 
2 Application of GP in Geotechnical Engineering 

 
Geotechnical properties of soils such as liquefaction potential, compaction characteris- 

tics, free swell index, swell pressure, and unconfined compressive strength (Baziar et 

al., 2011; Alavi and Gandomi, 2011, 2012; Naderi et al., 2012; Soleimani et al., 2018; 

Bodour et al., 2022; Vishweshwaran et al., 2019) have been investigated by the appli- 

cation of GP techniques. Similarly, GP has been used to predict the behavior of geo- 

materials such as the prediction of soil water characteristic curve (Johari et al., 2006), 

settlement of shallow foundation (Razania and Javadi, 2007), bearing capacity of shal- 

low foundation (Shahin, 2015), bearing capacity of pile foundation (Fatehnia and 

Amirinia, 2018), and in soil-fiber composite assessment (Kurugodu et al., 2018). From 

which a few identified areas are discussed in the subsequent section. 

 
 

2.1 Prediction of soil parameters 

 
Compaction Characteristics (OMC and MDD). Naderi et al. (2012) collected a da- 

tabase to estimate optimum moisture content (OMC) and maximum dry density (MDD) 

using GP which gives a highly precise model. The independent variables of the model 

are the soil classification properties, including % of fines (FG), % of sand (S), % of 

gravel (G), specific density (Gs), liquid limit (wl) in % and plastic limits (wp) in % and 

the dependent variables are OMC an MDD. The best model for OMC and MDD for- 

mulated based on GP is as follows: 

 

 

 

 

(1) 
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The comparison of GP-based models (Eq.1 and Eq. 2) performed better than simple 

regression analysis (Gunaydin 2009), ANN model (Gunaydin 2009), and MLR-based 

model in terms of coefficient of correlation and lowest regression errors. 

 
Unconfined compressive strength (UCS). Several researchers developed a few mod- 

els for estimation of UCS using traditional regression techniques, the ANN model (Mo- 

zumdar and Laskar 2015), and MGGP based model. The MGGP model for the predic- 

tion of UCS of geopolymer stabilized clayey soils is as follows: 

 

 

 
(3) 

 

 
𝑤here, PI is the plasticity index, S is the percentage of ground granulated blast furnace 

slag, FA is the percentage of fly ash, and A/B is the alkali to binder ratio. The proposed 

MGGP model (Eq. 3) for predicting the UCS of geopolymer stabilized clayey soils 

gives better performance as compared with the other methods and models (Soleimani 

et al. 2018). Similarly, another GP-based model was also proposed by Kurugodu et al. 

(2018) for predicting the UCS of soil-fiber composite in terms of strength improvement 

factor. 

 
Free swell index and swell pressure. A free swell of soil is the ratio of the difference 

in final volume to the initial volume, expressed in percentage. Swell pressure is defined 

as the load required to bring the specimen back to its initial condition (void ratio). If 

the soil free swell value is more than 50% then it causes considerable damage to the 

lightweight structures through the cyclic swell shrink phenomenon (Nelson and Miller, 

1992). Vishweshwaran et al. (2019) proposed a GP-based model to account for the per- 

centage of free swell (FS) and swelling pressure (SP) and it is as follows: 

(4) 
 

  (5) 

where wL is the liquid limit, wP is the plastic limit, w0 is initial water content, A is the 

activity of clay, and D is depth. The predicted values of FS and SP were found close to 

the measured values and the above equations (Eq.4 and Eq.5) are applicable for clay 

shales of the Tabuk region. 



Niraj J. Sahare and Raheena M 

TH-15-14 4 

 

 

 

 

 

 

 

 
Soil Liquefaction. Several researchers tried to model liquefaction potential using finite 

elements, analytical methods, empirical methods, and neural network-based models 

(Javadi et al., 2006). But these methods cannot provide an accurate and reliable predic- 

tion of lateral displacement for cases with measured lateral spreading less than about 1 

m (Seed et al., 2003) except ANN. ANN can be trained to learn the relationship between 

the input (soil) and output (liquefaction-induced lateral displacement) variables. How- 

ever, the main disadvantage of the ANN model is its black-box nature. Therefore, a 

new technique of genetic programming is introduced for the prediction of liquefaction. 

A database of 485 SPT-based case histories, collected by Youd and Bartlett (2002), is 

used for training and validation of GP models developed for two specific site condi- 

tions. 

Case 1: for free space 

 

 

 
(6) 

 

 

 
 

Case 2: Gently sloping ground condition 

       (7) 

where Dhc is the horizontal displacement, M is the earthquake magnitude, R nearest 

horizontal distance of the seismic energy source to the site, T15 is the cumulative thick- 

ness of saturated cohesionless soil layers with corrected SPT number less than 15, F15 

average fines content (< 75µm) for granular materials within T15, D5015 is the average 

mean grain size for granular materials within T15, W free face ratio, and S slope of the 

ground surface. A comparison of the results shows that the result predicted by the pro- 

posed GP models provides a good set of results and improvement in the results over the 

commonly used MLR model (Javadi et al., 2006). 

Alavi and Gandomi (2011) developed GP-based models (Eq.8, Eq.9, and Eq.10) us- 

ing linear genetic programming (LGP), gene expression programming (GEP), multi- 

expression programming, and Gandomi and Alavi (2012) developed GP based models 

(Eq.11) using multigene genetic programming (MGGP) for deciding the liquefaction 

(LC) and non-liquefaction soil conditions are as follows: 

                       (8) 

(9) 
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where σ’v is effective stress, Rf is sleeve friction ratio, amax is maximum horizontal 

ground surface acceleration, qc is the cone tip resistance, Mw is earthquake moment 

magnitude, and σv is total stress at the same depth. If the output of equations (8) to (11) 

is greater than or equal to 0.5, the condition is marked as “liquefied”, otherwise, it is 

marked as “non-liquefied”. The accuracy of the GP models in terms of training and 

validation as follows: 

 

Table 1. Performance of GP models in terms of training and validation 

Validation 
GP model Training (%) 

(%) 
 

LGP 90 94.64 

GEP 88.82 92.86 

MEP 86.47 85.71 

MGGP 90 96.4 

 

Another successful application of GP in the assessment of soil liquefaction potential 

was carried out by Rezania et al. (2010), and Gandomi and Alavi (2013) developed a 

GP model coupled with orthogonal least squares for predicting the soil capacity energy 

required to trigger soil liquefaction. 

 
2.2 Prediction of soil behavior 

Settlement of shallow foundation. Rezania and Javedi (2007) used 173 standard pen- 

etration test (SPT) test results collected from seven different studies, compiled by Sha- 

hin et al. (2002) used for the development and verification of the GP model. The results 

of the proposed GP model are compared with other traditional and Artificial Neural 

Network (ANN) models. Eq. (12), (13), and (14) are the GP model developed for the 

settlement of shallow foundations by Razania and Javadi (2007), Shahnazari et al. 

(2014), and Shahin (2015), respectively. 



Niraj J. Sahare and Raheena M 

TH-15-14 6 

 

 

 

 

 

 

 

 

(12) 

 

 
(13) 

 

 

                   (14) 

where, SC is the predicted settlement in mm, q is the net applied footing pressure in kPa, 

B is the footing width in m, Df is the footing embedment depth in m, N is the average 

SPT blow count and L is the footing length in m. Comparing the results obtained from 

the GP models (Eq.12, Eq.13, and Eq.14) and traditional models along with the ANN 

model indicates that the GP models outperform the other models. The results obtained 

from the proposed GP model (Eq.14) and measured settlement were compared with the 

results predicted through the ANN model developed by Shahin et al. (2002) and other 

three traditional methods based on cone penetration test (CPT) and standard penetration 

test (SPT) given by Meyerhof (1965), elastic-isotropic half-space equation given by 

Schultze and Sherif (1973) and CPT and dilatometer test (DMT) given by Schmertmann 

(1978) as shown in figure 1. It can be observed that Shahin (2015) developed an evo- 

lutionary polynomial regression (EPR) based model and ANN model that outperformed 

the other traditional methods for the prediction of settlement of shallow foundations on 

cohesionless soil in terms of performance measures including coefficient of correlation 

(r), coefficient of determination (R2), root mean squared error (RMSE), mean absolute 

error (MAE) and the ratio of average measured to predicted outputs (µ). 
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Bearing Capacity of Pile foundation. Shahin (2015) prepared a model based on EPR 

for driven piles and drilled shafts consisting of 79 in situ driven pile load tests and 94 

in-situ drilled shaft load tests as well as cone penetration test results. The data were 

collected from different locations, with different soil conditions including cohesive and 

cohesionless soil. The drive pile load tests include tension and compression loading 

conducted on concrete and steel piles with different shapes and ranges in diameter be- 

tween 250 mm to 900 mm and embedment lengths between 5.5 m to 41.8 m. The drilled 

shaft load tests were conducted on straight and belled concrete piles that have stem 

diameters ranging from 305 to 1798 mm and embedment lengths from 4.5 m to 27.4 m. 

The models for yield capacity (Qu) of driven steel pile (Eq. 15), driven concrete pile 

(Eq. 16), and drilled shafts (Eq. 17) are as follows: 
 

(15) 
 

(16) 
 

(17) 

where, D is the pile perimeter for driven piles or piles stem diameter for drilled shafts 

in mm, B is the drilled shaft base diameter in mm, L is the pile embedment length in m, 

is the weighted average cone point resistance over pile tip failure zone in MPa, 

the weighted average cone sleeve friction over pile tip failure zone in kPa, 

the weighted average cone point resistance over pile embedment length in 

MPa, and  is the weighted average cone sleeve friction over pile embedment 

length in kPa. The performance of EPR-based models is compared with the other four 

models for driven piles as shown in Figure 2. For driven piles, the methods considered 

for comparison include the ANN model developed by Shahin (2010), the European 

method developed by De Ruiter and Beringen (1979), the LCPC method developed by 

Bustamante and Gianeselli (1982) and Alsamman (1995) method. From figure 2, it is 

clear that the performance of the EPR model is good and outperforms the other methods 

except for Alsamman's (1995) model. 
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Fig. 2. Performance measure – (a) Methods for driven piles (b) methods for drilled piles 

 
Soil water characteristic curve (SWCC) SWCC is one of the most important concepts 

for any model in the case of unsaturated soil behavior because it describes the variation 

of soil suction with changes in water content (Fredlund et al. 2002). In unsaturated soil 

behavior shear strength, volume change, diffusivity, and adsorption properties affect 

the SWCC (Fredlund and Rahardjo 1993). SWCC can find out in the laboratory using 

a pressure plate, Buchner funnel, tensiometers, pressure membranes, and filter paper, 

heat dissipation sensor. But these experiments are costly and time-consuming. There- 

fore, researchers proposed several empirical methods to estimate the SWCC for soils. 

Johari et al. (2006) have proposed a GP model for the prediction of SWCC of soils 

using some independent parameters like initial void ratio, initial gravimetric water con- 

tent, the logarithm of suction normalized for atmospheric air pressure, clay content, and 

silt content and the dependent parameter consist of the gravimetric water content 
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corresponding to the assigned input suction. Researchers compiled 186 database results 

from pressure plate tests with the grain size distribution of the reported soil type and 

used that database for the development and validation of the model. The model gener- 

ated based on GP is as follows: 

(18) 

(19) 

 
 

where Y is predicted water content, Y0 is predicted initial water content (at suction 

0.2kPa), X1 is an initial void ratio, X2 is initial water content, X3 is log (suction in 

KPa)/pa, pa is atmospheric pressure (taken as 100 kPa), X4 is clay content (%), X5 is silt 

content in % and w is adjusted water content. The proposed GP model compared with 

the conventional methods indicated its superior performance for the prediction of 

SWCC. 

 
Estimation of pore water pressure. Soil water characteristic curve and permeability 

function are the two input components required for the computation of pore water char- 

acteristic curve (PWCC) using the unsaturated seepage modelling for estimating pore 

water pressure. MGGP was used for generating pore water pressure profile (PWPP) in 

unsaturated soil (Garg et al. 2014). The main advantage of MGGP is that it can predict 

the PWPP directly without the need to perform numerical solutions to highly non-linear 

Richard’s equation. The best fit MGGP model is as follows 

 
 

 (20) 

where x1 is the air entry value, x2 is residual volumetric water content, x3 is saturated 

volumetric water content, x4 is the slope, and x5 is depth. The above MGGP model (Eq. 

20) gives the explicit mathematical relationship between input and output components 

which can also be used offline to estimate the pore water pressure. 

 
3 Conclusion 

 
Earlier traditional methods (i.e., SPT, CPT, DMT, etc) were used in geotechnical engi- 

neering for the estimation of soil properties but due to time economy constraints, people 

started using empirical, numerical, and finite element methods. But the accuracy of 

these methods limits their usage in the above-mentioned areas of geotechnical engi- 

neering. Thereafter, different Artificial Intelligent (AI) methods including ANN, GA, 

GP, PSO, and DL used in geotechnical engineering. In this review paper, applications 

of Genetic Programming (GP) in geotechnical engineering have been discussed with 

the help of previous studies. GP models provide more accurate solutions than other 
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traditional and ANN methods in terms of r, R2, RMSE, MAE, and µ. The accuracy of 

GP models depends on the selection of input parameters which decide the accuracy of 

the output parameter. The paper discusses a detailed review of settlement of the shallow 

foundation, bearing capacity of pile foundation, soil liquefaction, soil water character- 

istics curve, compaction parameters, pore water pressure, unconfined compressive 

strength, free swell and swell pressure. Different input parameters were identified in 

the above-mentioned areas and successfully used in the model for the prediction of the 

solution. Overall, GP has been successfully used and solved the various problems as- 

sociated with the different areas in geotechnical engineering as compared with other 

models and methods discussed in this paper. 
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