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Abstract. An attempt is made to give a formulation of the pseudo-static bearing capacity
coefficient of a shallow strip footing embedded in slope in c-φ nature of the soil in terms of a
single coefficient (Nγe) using limit equilibrium method which is subjected to groundwater flow.
Failure surface is assumed linearly varying with cohesion, surcharge and unit weight of the soil.
Iteration technique has been applied to optimize the solution. The ultimate bearing capacity
equation was derived as a function of different properties of soils and footing i.e; width of
footing, depth of footing, the cohesion of soil, unit weight of soil, depth of water table. A vari-
ous parametric study has been studied to show the variation of bearing capacity coefficient with
different parameters. Design chart of table has been shown for various range of parameters.
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1 Introduction

The very first researches were done based on the static method of analysis in which bearing
capacity coefficients were calculated on the basis of static loads on the footings and the weight
of the soil mass in both active and passive conditions. The critical bearing capacity theories
started from Rankine (1885), Prandtl (1921), Terzaghi (1943), Saran, et al (1989) and many
others who have extensively studied the bearing capacity of shallow footings for static loading
case. Terzaghi bearing capacity Theory (1943) was the first general theory for the bearing ca-
pacity of soils under a strip footing. The seismicity effect was not considered in the analysis
and hence the name static. Meyerhof and Adams (1968), Rowe and Devis (1982
a,b), Subha Rao and Kumar (1994) worked on the ultimate uplift capacity of foundations
under static condition by using different methods of analysis (limit equilibrium, non-linear
finite element method, method of characteristics).The effects of dynamic loadings like seismic
forces were not considered in the static analysis. Severe earthquakes such as the Kobe earth-
quake (1995), Santa Barbara (1925), Nigata (1964), Loma Prieta (1989) have earmarked the
necessity of seismic design of structures. The dynamic loading of the earthquake has caused
catastrophic effects due to foundation failure as well as anchor failure, creating an urgent need
for seismic design of foundations and anchors under different conditions it can ve subjected to.
Since a dynamic load is repetitive in nature, there is a need to determine the displacement of the
foundation due to earthquakes and their damage potential.



2

In Pseudo-Static analysis, the seismic loadings are considered to be as equivalent inertia forces

i.e., the weight of the wedge is multiplied with the acceleration coefficient (horizontal and

vertical) and the inertia forces are found out on the basis of the Static equilibrium considera-

tions.

Mononobe and Okabe (M-O) (1929) was the pioneer in the inclusion of “seismicity” in the
design of structures (in this case retaining walls). IS 1893:1984 has also adopted the M-O

method for the determination of seismic active and passive earth pressure behind the retaining

walls. Among the limited literature available on the seismic bearing capacity, the earliest is

the Meyerhof’s (1963) method, where the seismic forces were considered as inclined pseudo-

static loads applied at the structure. Then, Sarma and lossifelis (1990), Richards et al.

(1993), Buddhu and Al-Karni (1993) and Kumar and Kumar (2003) considered the seismic

forces both on the structure and on the supporting soil mass which was not considered by Mey-

erhof. Researchers like Sarma and lossifelis (1990), Buddhu and Al-Karni (1993), Richards et

al. (1993), Dormieux and Pecker (1995), Paolucci and Pecker (1997), Soubra (1997, 1999) ,

Kumar and Rao (2002) , Kumar (2003), and Choudhury and Subha Rao (2005) had studied the

seismic bearing capacity of shallow footings for horizontal ground. But the study for the slop-

ing ground is very limited. Sawada et al. (1994), Sarma (1999) and Askari and Farzaneh (2003)

had given the solution for seismic bearing capacity of shallow foundations near the sloping

ground, again some works for surface footing on the sloping ground was carried out

by Zhu (2000), Kumar and Kumar (2003) , Kumar and Rao (2003), by limit equilibrium analy-

sis, method of characteristic etc. but for foundations embedded in sloping ground research is

still limited. Choudhury and Rao (2006), Chakraborty and Kuamr (2014) determined the seis-

mic bearing capacity of a shallow foundation embedded in a sloping ground surface by using

the theorems of limit equilibrium method and limit analysis in conjunction with finite elements

and non-linear operations respectively. Larkin (2006) presented a method of assessing the

probability of failure of shallow foundations in saturated fine-grained soil under multi direc-

tional seismic loading. Then Massiah and Soubra (2008) presented a reliability-based approach

for the analysis and design of a shallow strip footing subjected to a vertical load with or without

pseudo-static seismic loading. The computation of bearing capacity of foundations in the pres-

ence of groundwater flow is not straightforward. Because footings are generally impervious, the

ground flow patterns beneath and around the foundation base may experience a change attribut-

able to the construction of the footing. The effect of groundwater flow has been given less

consideration in the literature. Vary recently, the bearing capacity of foundations subject to

groundwater flow has been presented by Veiskaramiand Kumar (2012) and Kumar

and Chakraborty (2013) by which the ultimate bearing capacity of strip foundations were cal-

culated subjected to horizontal groundwater flow with the help of the stress characteristics

method and lower bound finite element method respectively.
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2 Method of Analysis

A shallow strip footing of width (B) resting below the ground surface at a depth of
(Df) over which a load (PL) acts. For shallow foundation (Df ≤B), the overburden
pressure is idealized as a triangular surcharge load over the slope line which acts
about a length EY at a slope angle of i. The failure surface has two main regions – the
active and the passive wedge and thereby is assumed to be a simple Coulomb failure
mechanism as shown in (Fig. 1). The detailed free body diagram of active zone AMC
and passive zone MCF respectively is shown in (Fig.2 ). The water table is taken at a
depth of Dwfrom the ground level (1st case) see (Fig.1). And the water table is taken at
a depth of Dwfrom the base of the footing (2nd case) see (Fig.3, Fig.4).H is the depth
of the failure wedge from the base of the footing, h is the depth from the level the
level of the water table up to the end of the failure zone and H is the total depth of the
failure mechanism from the ground level to the end of the Failure zone.

Fig. 1. 1st condition (Water table above the base of footing)

Fig. 2. Free body diagram of forces under Pseudo-static approach
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Figure 3. 2nd condition (Water table below the base of the footing)

Figure 4. Free body diagram of forces under Pseudo-static approach

The hydrostatic force due to the presence of the water is given by :

2

2
w

statP h

 (1)

Which acts at a height of h/3 from the base of the system.
As given by Ebeling and Morrison (1992), is replaced by such as:
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 we w w ur      (2)

The hydrostatic force i.e. under seismic condition is calculated by using
Westergaard’s approach(1993):

27

12dyn h wP k h (3)

Which acts at a height of 0.4h from the base of the system.

Pseudo-Static analysis:-

1st condition (water table above the base of the footing)
Active region:
Let width of the footing AM = B.
The angle of inclination of the active wedge with the horizontal is

a and therefore

the height of the wall MC = B tan(ρa)which is considered as H say.
Applying the limit equilibrium conditions in the triangular region AMC ie,summation
of horizontal forces and vertical forces equal to zero, we get :

   10 cos sin cot
cotA A a a h hyd sw

a

cB
H P R W P k P P  


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(4)
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 , , , , ,A h v a wP f k k D   (6)

Passive region :
Applying the limit equilibrium condition in the polygonal region MCDE i.e.,
summation of horizontal forces and vertical forces equal to zero we get:
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From the equilibrium of two wedges, the active pressure and passive pressure will be

equal. Thus we can find out maximum load (PL) acting on the foundation from the

equilibrium of the two wedges.
So,

A PP P (9)

1

2L eP BN (10)

2nd Condition (water table below the base of the footing)

Active region

Similarly, as in 1st condition

Applying the limit equilibrium condition in the triangular region AMC i.e.,

summation of the horizontal forces and the vertical forces equal to zero we get:

   10 cos sin cot
cotA A a a h hyd sw

a

cB
H P R W P k P P  


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(12)

 , , , , ,A h v a wP f k k D   (13)

Passive region

Applying the limit equilibrium condition in the polygonal region MCDE i.e.

summation of the horizontal forces and the vertical forces equal to zero the authors
get:
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From the equilibrium of two wedges, the active pressure and passive pressure will be

equal. Thus we can find out maximum load (PL) acting on the foundation from

the equilibrium of the two wedges.

So,

A PP P (17)

1

2L eP BN (18)

3 Results and discussion

The bearing capacity coefficient eN is optimized with respect to ,A p  by iterative

technique. From the global concave curve, the minimum value is taken as optimum
value. Tables and parametric studied have been determined for pseudo-static values
of strip footing which has been subjected to water condition under seismic criteria.
Design charts shows in Tabular form in Table 1.

Table 1. Pseudo-static bearing capacity coefficients ( eN ) for 0.1, / 0.25h wk D B  .

ϕ δ 2c/γ
B

Kv=0 Kv=kh/2

Df/B Df/B

20

0
0 7.6 8.7 10.4 12.4 8.0 8.9 10.5 12.5

0.25 10.16 11.39 13.21 15.33 10.45 11.66 13.47 15.60
0.5 12.57 14.03 16.05 18.31 12.97 14.42 16.42 18.72

ϕ
/2

0 8.57 9.90 12.08 14.69 8.75 10.04 12.211 14.832
0.25 15.52 13.20 15.61 18.44 11.83 13.49 15.91 18.74
0.5 14.32 16.33 19.01 22.06 14.76 16.75 19.45 22.53

ϕ
0 9.462 11.29 13.97 17.30 9.65 11.35 14.11 17.45

0.25 13.01 15.23 19.36 22.07 13.35 15.55 18.59 22.53
0.5 16.3 19.09 22.51 26.49 16.80 19.49 23.01 27.03

30

0
0 15.68 17.86 20.98 24.57 15.95 18.07 21.12 24.72

0.25 19.32 21.80 21.32 25.077 19.25 22.18 25.08 29.29
0.5 22.84 25.92 29.22 31.24 23.42 25.27 29.75 29.99

ϕ
/2

0 20.02 23.03 28.01 34.31 20.30 23.84 28.71 36.71
0.25 24.84 28.85 34.92 40.41 20.19 25.7 34.71 40.89
0.5 29.51 34.15 39.89 46.41 30.2 34.79 40.55 47.08

ϕ
0 26.09 32.04 39.93 49.11 26.37 32.26 40.05 49.21

0.25 33.07 39.93 48.59 58.48 33.62 40.44 49.10 58.97
0.5 39.82 47.58 57.01 67.60 40.63 48.40 57.85 68.48
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Parametric study

A detailed parametric study have been conducted using the results that are obtained
from the optimising spread sheet which gives the optimum Reduced Seismic Bearing
capacity coefficient

eN  and discussions are made for the different variation of

parameters for all the two different mechanisms adopted in the work i.e., limit equi-
librium principle : pseudo-static method.

From the graph it can be seen that the bearing capacity coefficient
eN  

  increas-

es with the increase in the soil friction angle   . Increase in  increases the

strength of the soil (or the internal resistance of the soil) against the shearing re-
sistance.

Fig. 5(a). 1st condition (Pseudo-Static Analysis) Fig. 5(b). 2nd condition

Fig. 5. (a), (b) : Variation of Bearing Capacity Coefficient with respect seismic accel-
eration  hk for different soil friction angle  2 0 , 3 0 , 4 0     at

2
, , 0 .2 , 0 .25, 0 .5, 0 .5, 15

2 2

cfh w iv u B B B

Dk Dk r



        

Fig.2 (a), (b) has done for a particular case, 0 .2hk  , when  increases from

30 40to 
, eN increases by Pseudo-static analysis: 1st condition – 133%, 2nd condi-

tion – 147% respectively which may be due to the fact that increase in  , increases

the strength of the soil against shearing resistance.

Fig. 6. shows that it can be seen that eN decreases with the increase in depth of wa-

ter level (Dw) for water table both above and below the base of the footing as the soil
looses its strength with increase in the content of water. From Fig.3: for a particular
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case, 0 .2hk  , when Dwincreases from 0.5m to 1.0m, eN decreases by Pseudo-

static analysis: 1st condition – 17%, 2nd condition – 2% respectively.

Fig. 6(a). 1st condition Fig.6(b). 2nd condition

Fig.6(a), (b):  Variation of bearing capacity coefficient with respect to seismic ac-
celeration (kh) at different depths of water table (Dw in m) at

2
, , 0 .2 , 0 .2 5 , 0 .5 , 0 .5 , 1 5

2 2

cfh w iv u B B B

Dk Dk r



        

From fig.7. it can be seen that eN decreases with the increase in the width of the

footing (B) with increasing seismic acceleration for the water table lying both above
and below the base of the footing. This is due to the stress effect i.e., the stress de-
pendency – smaller footing will have smaller stress whereas the larger footing will
have higher stress and hence smaller bearing capacity coefficient. For a particular

case, kh = 0.2 when B increases from 2 m to 2.5 m eN decreases by Pseudo-static

analysis: 1st condition – 17%, 2nd condition – 23% respectively.
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Fig. 7(a). 1st condition Fig. 7(b). 2nd condition

Fig.7(a),(b): Variation of Bearing Capacity Coefficient with respect to seismic accel-
eration (kh) for different width of footing at

2
3 0 , , 0 . 2 , 0 . 2 5 , 0 . 5 , 0 . 5 , 1 5

2 2

cfh wa t iv u B B B

Dk Dk r



          

Fig. 8. shows that eN increases with the increase in the depth of foundation (Df) for

the case of both water table lies below and above the base of the footing. The effect of
increase in depth on increase in bearing capacity coefficient is predominant due to
increase in surcharge weight, thus causing maximum passive resistance which gov-
erns the safe bearing capacity of the soil. For a particular case, kh=0.2 when Df in-

creases from 0.5 m to 1.0 m eN increases by Pseudo-static analysis: 1st condition –
19%, 2nd condition – 39% respectively.

Fig. 8(a). 1st condition Fig. 8(b). 2nd condition
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Fig. 8(a).(b). Variation of bearing Capacity Coefficient with respect to seismic accel-
eration (kh) for different depth of footing (Df in m) at

2
30 , , 0 .2, 0 .25, 0 .5, 0 .5, 15

2 2

cfh wat iv u B B B

Dk Dk r



          

Fig. 9. Shows the variation of eN under seismic condition i.e., kh at different values

of cohesion (c= 0 kN/m2,5 kN/m2,10 kN/m2). Seismic Bearing Capacity coefficient
increases as cohesion increase, which causes increase in intermolecular attraction
among the soil particle thus offering more bearing capacity for the conditions where
table lies both below and above the base of the footing. For a particular case kh= 0.2,

when c increases from 0 kN/m2 to 5 kN/m2
eN increases by Pseudo-static analysis:

1st condition – 29%, 2nd condition – 53% respectively.

Fig. 9(a). 1st condition Fig. 9(b). 2nd condition

Fig.9(a),(b): Variation of bearing Capacity Coefficient with respect to seismic accel-
eration (kh) for different values of cohesion for

2
3 0 , , 0 .2 , 0 .2 5 , 0 .5 , 0 .5

2 2

cfh wa t v u B B B

Dk Dk r



        
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Fig.10. Variation of bearing Capacity Coefficient with respect to seismic acceleration
(kh) for different for different unit weight of soil (γ in kN/m3) at

2
3 0 , , 0 . 2 , 0 . 2 5 , 0 . 5 , 0 . 5 , 1 5

2 2

cfh wa t iv u B B B

Dk Dk r



          

Fig.10(a). 1st condition Fig.10(b). 2nd condition

Fig. 10(a), (b): Shows the variation of eN with respect to horizontal seismic acceler-

ation (kh) at three different values of unit weight of soil (γ), seismic bearing capacity
factor will be decreased because the (2c/γB) portion decreases in the expression of

eN . For a particular case, kh = 0.2, when γ increases from 17 kN/m3 to 19 kN/m3, eN

decreases by Pseudo-static analysis: 1st condition – 07%, 2nd condition – 53% respec-
tively.
The change in bearing capacity coefficient due to increase in pore water pressure is
found to be very minimal for both the cases of water table above and below the base
of the footing and pseudo-static analysis.

4 Conclusions

An effort has been built to assess the Pseudo-static bearing capacity of shallow strip
footing embedded in slope in c-φ nature of soil in terms of a single coefficient (Nγe) using limit
equilibrium method which is subjected to ground water flow. In the analysis, coincident
resistance of unit weight, surcharge and cohesion is taken into account to calculate
the pseudo-static bearing capacity coefficients in which linear failure surface is con-
sidered. From the parametric study it has been observed ultimate bearing capacity
decreases by increasing depth of water table, Seismic coefficients and bearing capaci-
ty increases by increasing width of the footing, cohesion, unit weight of the soil. De-
sign chart has been represented in table which can be applied in practical field.
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