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Abstract. Response surfaces are commonly adopted as a surrogate for complex 

performance functions due to their ability to solve rock slope reliability problems 

with low computational costs. Most widely used methods employ a static scheme 

that uses input (rock properties) and output (factor of safety) samples generated 

using some experimental design to obtain the best fit parameters of the response 

surface. However, since the selection of input samples is not optimized, the in-

crease in accuracy of the response surface often comes at a cost of an increased 

number of performance function evaluations, particularly, for slopes having a 

low probability of failure (𝑃𝑓). This is addressed by an active learning scheme 

that iteratively selects input samples that improve the prediction of the response 

surface around the failure region. In this paper, active learning scheme with sup-

port vector machine (SVM) is adopted for estimating the 𝑃𝑓 a rock slope along 

Rishikesh – Badrinath highway against planar failure. The analytical expression 

for the factor of safety is utilized for conducting Monte Carlo simulation to esti-

mate 𝑃𝑓, which is treated as a benchmark for determining the accuracy of the 

proposed method. Comparison with static scheme SVM illustrates the advantages 

of active learning scheme in increasing the accuracy in estimating the 𝑃𝑓 for a 

similar number of performance function evaluations. 

Keywords: Active learning, Support Vector Scheme, Rock slope planar failure, 

Probability of failure 

1 Introduction 

Analysis of the stability of rock slopes is one of the most important problems in rock 

engineering. Rock slope failures can either be structurally controlled in which sliding 

of rock mass occurs along the discontinuities or stress-controlled which is characterized 

by shear failure of the rock mass under self-weight. The traditional design approach 

consists of deterministic characterization of intact rock and rock mass properties fol-

lowed by estimation of factor of safety (FOS) of the slope. Several limit equilibrium 

methods (LEM) and numerical techniques have been developed and applied for FOS 

estimation (Hoek and Bray, 1981; Kanungo et al., 2013; Tiwari and Latha, 2015; Pan-

dit, 2018). If the FOS of the slope exceeds a certain value it is considered safe. How-

ever, since the rock mass is a geo-material, its parameters are subjected to uncertainty 

which leads to uncertainty in the estimated FOS. 
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This problem can be addressed by probabilistic stability assessment that considers 

the uncertainty in the rock mass parameters and estimates the probability of failure (𝑃𝑓) 

of the slope, which must be below some threshold value for it to be considered safe. 

Several probabilistic techniques such as first order reliability method (FORM), point 

estimate method (PEM) and Monte Carlo simulations (MCS) have been utilized in con-

junction with LEMs and numerical methods to estimate 𝑃𝑓 (Ang and Tang, 1975). MCS 

is a widely used method for 𝑃𝑓 estimation that involves the evaluation of the perfor-

mance function (LEM or other numerical methods), corresponding to a larger number 

of randomly realized rock mass parameters. This becomes computationally challenging 

if the performance function requires large run times. This can be addressed by con-

structing a response surface, that acts as a simpler surrogate function relating rock mass 

parameters and FOS. This function can be a polynomial, Radial basis function (RBF), 

Gaussian process model, Support vector regression (SVR), etc. (Roy and Chakraborty, 

2020). 

This approximation of the performance function is achieved by training the surrogate 

function using the training data points chosen according to the design of experiments 

(DOE). Space filling DOE like Latin hypercube sampling (LHS) is widely adopted. 

However, the accuracy of the response surface in approximating the true 𝑃𝑓 of the slope 

depends on its accuracy near the failure surface. This is difficult to achieve with static 

DOE samples. Several researchers have addressed this problem by enriching DOE it-

eratively by taking data points close to the approximated failure surface (Echard et al., 

2011; Roy and Chakraborty, 2020). However, limited research has been done on the 

applicability of adaptive response surface methods on 𝑃𝑓 estimation for rock slopes.   

In this paper, 𝑃𝑓 of a rock slope located along Rishikesh – Badrinath highway sus-

ceptible to planar failure is estimated using direct MCS and SVR based response sur-

face with both static and adaptive strategies. Adaptive strategy is executed in two stages 

– First, an initial LHS DOE is used to approximate the performance function and second 

- new data points are added iteratively to the initial DOE which are nearest to the failure 

surface as approximated by the previous DOE and located as far as possible. This se-

quential addition is performed until convergence is achieved. It is demonstrated that 𝑃𝑓 

estimate of the rock slope is greatly improved for a similar number of performance 

function evaluations when compared with the static strategy. 

2 Support Vector Regression 

The SVR is widely used to learn the linear/non-linear relationship between the input 

and the output features. It is obtained by minimizing a 𝜀-insensitive loss function which 

penalizes the points only when they are located beyond the tube enclosed by 𝜀 (non-

negative precision tolerance) (Drucker et al., 1996).  

Let 𝑿 be the vector of input variables with output 𝑦. For a given training data set 

{𝒙𝟏, 𝒙𝟐, … 𝒙𝒏}, 𝒙𝒊 𝜖 ℝ𝑚 and corresponding output {𝑦1, 𝑦2 , … , 𝑦𝑛}, 𝑦 𝜖 ℝ, the support 

vectors are obtained by solving the optimization problem –  
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Maximize 

𝑤(𝛼, 𝛼∗) =
−1

2
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∗)(𝛼𝑗 − 𝛼𝑗
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𝑚

𝑖,𝑗=1

+ 𝜀 ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗) − ∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑚

𝑖=1

𝑚

𝑖=1

        (1) 

Subjected to 

{
∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑚

𝑖=1

= 0                                                       0 ≤ 𝛼𝑖

𝛼𝑖 ≤ 𝐶                                                               𝑖 = 1,2, … . 𝑚  

       (2) 

where 𝐶 is regularization constant, 𝛼𝑖 , 𝛼𝑖
∗ are Lagrangian multipliers, and 𝐾(𝒙𝒊, 𝒙) is 

the RBF kernel function. After solving the optimization problem, SVR can be expressed 

as  

𝑦 = 𝑓(𝒙) =  ∑ (𝑛
𝑖=1 𝛼𝑖 − 𝛼𝑖

∗)𝐾(𝒙𝒊, 𝒙) + 𝑏  (3) 

where 𝑏 is an offset parameter.  

     The accuracy of SVR is generally estimated by comparing the SVR output and ac-

tual output of the test data set and evaluating the goodness-of-fit measure (such as 

RMSE, coefficient of determination 𝑅2, etc.).  

 

2.1 Static SVR 

Initially, a predefined number of input data sets are obtained using some design of ex-

periments (space filling designs such as LHS), which are input into the performance 

function to get corresponding outputs. This input-output pair called the training data 

set, is utilized to construct a SVR. A separate test input-output pair is then utilized to 

estimate the accuracy of the SVR. If accuracy is low, then the number of input data set 

is increased and the steps are repeated till the desired accuracy is achieved. However, 

higher goodness-of-fit doesn’t guarantee higher accuracy in the estimation of 𝑃𝑓, since 

the location of the test data set might be away from the surface of the input domain 

where FOS is 1 (limit state).  

 

 

2.2 Adaptive SVR 

Adaptive SVR aims to select such input data sets that significantly improve the accu-

racy of SVR, in case desired accuracy is not achieved. Since the objective is to find 𝑃𝑓 

of the rock slope, the accuracy of SVR should be high in the region around the limit 

state.  

     Initially, static SVR - 𝑆𝑉𝑅(0) is constructed with small training data sets, resulting 

in lower accuracy. Now, the next set of training data points are chosen such that they 



Pandey, Raj, Yadav and Pandit 

TH-16-9                                                                                                                   4 

 

are located near the limit state as predicted by 𝑆𝑉𝑅(0) and located far from other train-

ing data sets (to ensure space filling). Subsequently, using the newly selected data sets, 

a new SVR - 𝑆𝑉𝑅(1) is constructed, having more accuracy than 𝑆𝑉𝑅(0). Similar, addi-

tion of new input data sets is performed 𝑘 times to get a final SVR - 𝑆𝑉𝑅(𝑘), beyond 

which no significant improvement is possible. 

3 Description of the rock slope 

A rock slope located along the Rishikesh – Badrinath highway in Uttarakhand, India is 

considered (Pain, 2012; Kumar and Tiwari, 2022; Pandit et. al, 2023). The major rock 

type of the slope is Quartzite with a unit weight of 26 kN/m3. Barton-Bandis strength 

model is assumed to represent the resistance offered by the rock joint against the driving 

force (Fig. 1). Table 1 consists of the estimated properties and their statistical distribu-

tions estimated using ISRM methods. The FOS of the slope is obtained as resistive 

shear force along the discontinuity divided by the driving force using the equation given 

below (for derivation refer Kumar and Tiwari (2022)): 

 
𝐹𝑂𝑆

=   

[𝑊{(1 − 𝑘𝑣) 𝑐𝑜𝑠(𝜃𝑝) − 𝑘ℎ 𝑠𝑖𝑛(𝜃𝑝)} − (
1
2

𝛾𝑤𝑍𝑤
2) 𝑠𝑖𝑛(𝜃𝑝) − {

1
2

𝛾𝑤𝑍𝑤 × (𝐻 − 𝑍)𝑐𝑜𝑠𝑒𝑐(𝜃𝑝)}] ×

𝑡𝑎𝑛 [𝜙𝑟 + 𝐽𝑅𝐶 × 𝑙𝑜𝑔 (
𝐽𝐶𝑆
𝜎𝑛

)]

[𝑊{(1 − 𝑘𝑣) 𝑠𝑖𝑛(𝜃𝑝) + 𝑘ℎ𝑐𝑜𝑠(𝜃𝑝)} + (
1
2

𝛾𝑤𝑍𝑤
2) 𝑐𝑜𝑠(𝜃𝑝)]

        (4) 

 

 

Fig. 1: Rock slope geometry (Kumar and Tiwari, 2022) 
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The performance function (Eq. 4) is coded in the Python and the deterministic FOS 

obtained is 1.12 when evaluated at mean values of input parameters, which is equal to 

the FOS obtained in Kumar and Tiwari (2022). 

 

Table 1. Rock joint and other properties along with their probability distribution (Pandit et. al, 

2023). 

Variable Mean SD PD 

Joint Roughness Coefficient (𝐽𝑅𝐶) 3.63 1.0903 Uniform 

Residual friction angle (𝜙𝑟) (o) 31.96 2.1873 Lognormal 

Joint wall Compressive Strength (𝐽𝐶𝑆) 

(MPa) 
10.18 2.5538 Lognormal 

Depth of water in tension crack (𝑍𝑤) 

(m) 
6.86 – 

Truncated Ex-

ponential 

Horizontal seismic coefficient (𝑘ℎ) 0.12 – 
Truncated Ex-

ponential 

Vertical seismic coefficient (𝑘𝑣) 0.08 – 
Truncated Ex-

ponential 

 

4 Estimation of 𝑷𝒇 using different methods 

The estimation of 𝑃𝑓 using analytical performance function and approximated different 

SVRs is performed in Python 3.0.  

 

4.1 Monte Carlo simulation 

𝑃𝑓 of 0.27 for the rock slope is obtained by conducting 105 MC simulations on Eq. 4. 

This ensures sufficient convergence of the 𝑃𝑓 estimate with coefficient of variation of 

0.5 %. Since, this is exactly known performance function, the 𝑃𝑓 thus obtained is treated 

as reference (𝑃𝑓
𝑟𝑒𝑓

) when comparing the 𝑃𝑓 obtained from static and adaptive SVR ap-

proaches. 

 

4.2 Static SVR 

In this approach, Eq. 4 is approximated by SVR using training data sets obtained from 

LHS by static approach. 51 LHS samples are utilized to construct the SVR and 25 test 

data sets are utilized to evaluate the SVR’s goodness-of-fit measures - 𝑅2 value and 

sum of squared error. 𝑃𝑓 of the rock slope is estimated by conducting 105 MC simula-

tions on the static SVR.  

Since LHS is a type of random sampling, the above procedure is repeated by chang-

ing the seed of the random number generator. 𝑃𝑓  obtained from each SVR is denoted 
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as 𝑃𝑓
𝑆1 , where subscript 𝑆1 refers to static SVR with seed value 1. Fig. 2 shows values 

of goodness-of-fit and the absolute difference |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝑆𝑖| obtained for 7 different 

seeds. It can be seen that the 𝑅2 values range from 0.85 to 0.77, while the |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝑆𝑖| 

range from 0.09 to 0.14. 

 
Fig. 2: 𝑅2 value (Left y-axis) and |𝑃𝑓

𝑟𝑒𝑓
− 𝑃𝑓

𝑆𝑖| (Right y-axis) for different seeds of random 

number generator 
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Fig. 3: Flowchart indicating the procedure adopted for adaptive SVR  
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4.3 Adaptive SVR 

The procedure adopted for adaptive SVR is provided as a flowchart in Fig. 3. For adap-

tive SVR, 𝑆𝑉𝑅(0) (refer section 2.2) is obtained initially with 30 LHS samples. After-

wards, 105 MC samples are evaluated on 𝑆𝑉𝑅(0) and those points are grouped in a 

candidate pool that leads to FOS values within the range [0.9, 1.1]. This ensures that all 

candidate points lie close to the limit state as predicted by 𝑆𝑉𝑅(0). Next, all candidate 

points are sorted according to the decreasing average Euclidean distance from all the 

training data points. Finally, the first three points are selected as adaptive addition to 

the initial training points, ensuring adaptive points are located as far as possible from 

training points satisfying the space filling requirements. Afterwards, updated training 

data set is utilized to construct 𝑆𝑉𝑅(1) which is more accurate than 𝑆𝑉𝑅(0). This se-

quential addition of adaptively selected points and improvement in SVR is performed 

for 7 iterations to arrive at 𝑆𝑉𝑅(7). Similar to static SVR, adaptive SVR is conducted 

with 7 different random number generators, with 𝑃𝑓 obtained denoted as 𝑃𝑓
𝐴𝑖 . Adaptive 

improvement with each iteration can be seen in Fig. 4, whereas, Fig. 5 shows the results 

of the analysis. It can be seen that 𝑅2 values range from 0.88 to 0.76 and |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝐴𝑖| 

range from 0.04 to 0.09. 

 

 
Fig. 4: Adaptive improvement in 𝑅2 value and decrease in |𝑃𝑓

𝑟𝑒𝑓
− 𝑃𝑓

𝐴𝑖| for a particular seed 

of random number generator 
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Fig. 5: 𝑅2 value (Left y-axis) and |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝐴𝑖| (Right y-axis) for different seeds of random 

number generator 

5 Discussions 

Adaptive SVR is compared with static SVR against the reference obtained by the 

known performance function. Static SVR usually employs LHS sampling to obtain 

training data sets, the accuracy of such SVR depends on the seed of the random number 

generator as demonstrated in Fig. 2 using 𝑅2 values and |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝑆𝑖|. It is also seen 

that a better 𝑅2 value does not imply a better prediction of 𝑃𝑓 as the test data which is 

used to estimate 𝑅2 is located randomly and not necessarily near the limit state. This 

limitation is important since static schemes of the response surfaces are widely adopted 

in the geotechnical discipline.  

Adaptive SVR sequentially improves the accuracy of estimating 𝑃𝑓 of the rock slope,  

as evident in Fig. 6 by observing the reduction in |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝐴𝑖| with adaptive addition 

of training data points. For the same number of performance evaluations as static SVR, 

a benefit defined as |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝑆𝑖| - |𝑃𝑓

𝑟𝑒𝑓
− 𝑃𝑓

𝐴𝑖| of up to 0.13 is obtained. For all adap-

tive SVR, with different values of seed number, final |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝐴𝑖| is below 0.1. Addi-

tionally, the fluctuation is observed in 𝑅2 values as |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝐴𝑖| is decreasing shows 

that high 𝑅2 value does not always imply more accuracy in estimating the 𝑃𝑓.  
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Fig. 6: Adaptive improvement (decrease) in |𝑃𝑓

𝑟𝑒𝑓
− 𝑃𝑓

𝐴𝑖| (triangles) and comparison with 

values of  |𝑃𝑓
𝑟𝑒𝑓

− 𝑃𝑓
𝑆𝑖| (circles) 

6 Conclusions 

In the current work, a probabilistic stability analysis of rock slope located on the 

Rishikesh - Badrinath highway susceptible to planar failure is performed. The perfor-

mance function of the slope is exactly known in the form of a limit equilibrium equation 

which facilitates the comparison of the accuracy of static SVR and adaptive SVR. It 

can be concluded that adaptive SVR offers a monotonous increase in accuracy in esti-

mating the 𝑃𝑓 with the sequential addition of adaptive training data. If enough iterations 

are performed, the desired accuracy can be achieved. However, as the accuracy of static 

SVR is defined in terms of goodness-of-fit measures, its high value does not always 

provide an increase in accuracy in 𝑃𝑓 estimation. It is demonstrated in the paper that 

adaptive SVR provides more accuracy compared to static SVR for a similar number of 

performance function evaluations.  
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