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Abstract. This paper presents the dynamic properties of northeast Indian river 

bed soil over wide strain range (0.001% to 5%) based on extensive laboratory 

tests. Resonant column tests data and cyclic triaxial apparatuses have been uti-

lized to obtain the required soil parameters along with the liquefaction potential 

of the soil at different testing conditions. A new correlation has been proposed 

to find out maximum shear modulus at very low shear strain (~10-4%). The ob-

tained results were compared with the existing literatures, which shows the im-

portance of site-specific dynamic soil properties. Furthermore, the variations of 

excess pore water pressure, based on cyclic loading, reflects the soil liquefac-

tion which can be further utilized in ground response studies for the evaluation 

of earthquake resist design parameters. 

Keywords: Dynamic properties, low shear strains, high shear strains, resonant 

column tests, cyclic triaxial tests, liquefaction potential. 

1      Introduction 

The Northeastern India, located close to the Himalayan seismic belt, experience mod-

erate (moment magnitude, Mw ≤ 6.0) to large earthquakes (6.0 < Mw ≤ 8.0) very often. 

This region also has witnessed two great earthquakes (Mw > 8.0) one each in 19th and 

20th centuries (Kayal, 2012), see Fig. 1. The past seismic events also lead to wide 

spread liquefaction in this region especially during 1897 Shillong earthquake and 

1950 Assam earthquake (Oldham, 1899; Raghu Kanth, 2010). Researchers predict 

that this region is due to a large impounding earthquake in the near future (Khattri, 

1992).  

Figure 1 presents the tectonic setup map of Northeast India superposed with seismic 

events (Mw ≥ 6.0) since 1897. As it is impossible to predict, warn or prevent the occur-

rence of these natural calamities, the way forward in reducing the impact is through 

better preparedness by having efficient aseismic design of infrastructure especially for 

lifeline structures like bridges, dams, etc. Some of these structures were built much 

before the seismic codal developments in India and hence, researchers have initiated 

requalification studies of such structures (Dammala et al., 2017a; Krishna et al., 2014; 
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Sarkar et al., 2014). Seismic design of any structures require the dynamic characteris-

tics (modulus degradation and damping variation) of underlying soil in order to incor-

porate the soil structure interaction effects, and such dynamic behaviour is different 

for different soils. It is very well recognised that underlying soil plays a crucial role in 

evaluating the stability of the overlying structure. But, due to unavailability of the 

site-specific or region-specific dynamic soil properties, geotechnical engineers are 

forced to use existing dynamic properties curves, which has been developed for other 

regions.  

  
Fig. 1. Seismotectonic map of Northeast India (after Raghu Kanth, 2010) 

The response of soil to each earthquake is unique depending upon strength and stiff-

ness properties of the soil and also on the parameters of exciting motion. Some earth-

quakes can induce very small strains in the soil, while some could trigger significant 

strains which can mobilize the entire shear strength of soil. Hence, the strength of soil 

with varying strains (shear modulus, G and Damping ratio, D) is required to perform 

an aseismic design of structures. Researchers have proposed such strain dependant 

dynamic soil properties based on extensive experimental and analytical relationships 

(Seed and Idriss, 1970; Vucetic and Dobry, 1991; Ishibashi and Zhang, 1993; Daren-

dali, 2001; Vardanega and Bolton, 2013). Based on these observations, the main ob-

jective of article is to obtain the strength and stiffness of the soil of this highly active 

seismic region. The dynamic characterization of chosen sand was obtained using soil 

element testing techniques such as Resonant column (RC) and Cyclic Triaxial (CTX) 

at different loading conditions (varying shear strain levels, confining pressures and 

initial void ratios). The results from each testing technique are presented in terms of 

shear modulus and damping variation with shear strain (γ) and finally combined to 

have the desired properties over wide strain range. 
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2 Experimental Program 

 
2.1. Material 

Brahmaputra Sand (BS) collected from Brahmaputra River near Guwahati region, 

Assam (India). The particle size distribution of the sand combined with probable liq-

uefiable zones for sandy soils is shown in Fig. 2, which confirms that BS is highly 

susceptible to liquefaction. Index properties of the soil were determined according to 

the ASTM standards and are presented in Table 1. The soil has been classified as 

poorly graded sand (SP) according to Unified Soil Classification System. 
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Fig. 2. Particle size distribution of BS compared with liquefiable soil zones proposed in  

(Xenaki and Athanasopoulos, 2003) 

Table 1. Index properties of sand 

Soil descriptions values Code followed 

Mean grain size, D50 (mm) 0.21 (ASTM D6913) 

Minimum unit wt. (kN/m3) 13.85 (ASTM D4254) 

Maximum unit wt. (kN/m3) 16.84 (ASTM D4253) 

Uniformity coefficient (Cu) 1.47  

Coefficient of curvature (Cc) 1.09  

Specific gravity 2.7 (ASTM D0854) 

Classification symbol SP (ASTM D2487) 

2.2. Sample preparation and testing procedures 

In order to obtain the strain dependant dynamic soil properties (G and D), RC and 

CTX apparatus have been utilized as one single equipment cannot provide G and D 

variation over the required strain range (0.001% to 5%). RC tests can provide reliable 

dynamic characterization up to a shear strain level of 0.1%, while CTX tests can fur-

nish up to a strain level of 5%. Sample preparation and testing procedure of RC and 
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CTX tests were followed according to the standards, ASTM D4015 and ASTM 

D3999, respectively and are described in detail by Dammala et al. (2017b) and Kumar 

et al. (2017a), respectively. Tests are aimed to predict the dynamic soil properties at 

varying effective confining pressures (σʹc) and varying relative densities (Dr). The 

summary of the testing programme is listed in Table 2. 

Table 2. Investigating parameters for RC and CTX tests 

Test Dr (±2%) e σʹc (kPa) Results presented 

RC 

30 

(etarget = 

0.860) 

0.865 50 

G-γ, D-γ from 0.0005% to 0.1% 

(Dammala et al., 2017b) 

0.851 100 

0.854 300 

50 

(etarget = 

0.792) 

0.789 50 

0.804 100 

0.798 300 

70 

(etarget = 

0.724) 

0.718 50 

0.725 100 

0.712 300 

30 0.856 
50 to  

600 

Maximum shear modulus (Gmax) and 

Minimum damping ratio (Dmin) 
50 0.780 

50 to 

600 

70 0.717 
50 to 

600 

CTX 

30 

(etarget = 

0.860) 

0.868 50 

G-γ, D-γ from 0.015% to 4.5% (at 10 

different strain levels) and liquefaction 

evaluation (Kumar et al., 2017a) 

0.856 100 

0.863 150 

60 

(etarget = 

0.758) 

0.765 50 

0.746 100 

0.741 150 

90 

(etarget = 

0.656) 

0.667 50 

0.672 100 

0.650 150 

3     Results and Discussions  

  
3.1. Evaluation of shear modulus (G) at small strain 

The variation of shear modulus with γ for BS obtained from RC tests at different σʹc 

and Dr are presented in Figs. 3a and b respectively. An increase of G with the increase 

of σʹc can be observed which clearly indicates that the dynamic shear modulus in-

creases with the overburden pressure. Figure 3b depicts that G increases with Dr and 

the difference diminishes as strain approaches 0.1%. 
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3.2. A new empirical correlations to evaluate maximum shear modulus (Gmax)  

Several researchers have proposed empirical correlations to evaluate the maximum 

shear modulus (Gmax) of sandy soil (Chung et al., 1984; Hardin and Richart, 1963; 

Saxena and Reddy, 1989). In the absence of resonant column tests data, researchers 

have used existing correlations to evaluate Gmax, presented in Table 3.  

Table 3 clearly indicates that each regions may have different correlations for 

the evaluation of Gmax, depending upon the particle sizes. In the present study, the 

results obtained from RC tests are used to form an empirical correlation (Eqn. 1) for 

Gmax determination. 
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where, σʹc = effective confining stress (kPa); Pa = atmospheric pressure (kPa); e = 

void ratio. Figure 4a shows the comparison between the observed value (based on 

experimental results) and predicted values (based on the Eqn. 1) at different σʹc and 

Dr. It can be seen that the proposed correlation provides better estimation of Gmax for 

BS (with only 2-4% error). Figure 4b testifies the efficiency of Eqn. 1. 
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Fig. 3. Variation of shear modulus with shear strain for BS sand at different (a) σ′c and (b) Dr          

(after Dammala et al., 2017b) 
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3.3. A new empirical correlations to evaluate small strain damping ratio  

Figure 5a presents the variation of damping ratio (D) with γ at different σʹc and Dr. 

It can be seen that D increases with γ, and decreases with σʹc. Based on the regression 

analysis of the experimental data, an equation (Eqn. 2) for the D is developed. Similar 

correlations were proposed by Saxena and Reddy (1989) and Chattaraj and Sengupta 

(2016) for Monterey sand and Kasai sand, respectively.   

                                             ( )
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The predicted D based on the Eqn. (2), depicted in Fig. 5a, shows close agreement 

with the experimental data.  
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Fig. 4. (a) Observed and predicted shear modulus at different Dr and (b) Comparison of meas-

ured Gmax from RC tests and predicted using Eqn. (1) 

Figure 5b illustrates the negligible effect of Dr on damping ratio (D). It is seen that, 

for a constant σʹc, the experimental and predicted data falls in narrow range. Figure 5c 

describes the deviation between experimentally obtained data and predicted data 
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based on Eqn. (2). Figure 6a presents the variations of G/Gmax and D with the γ at 

different σʹc. It can be observed that the effect of σʹc on the G/Gmax curve and D-curve 

are negligible for low strain range (γ < 0.001%) beyond which the effect is significant. 

Since, higher σʹc impart higher resistance to deform, the G will be higher. This shows 

the linear elastic behaviour of soils at low strain range (<0.001%) and with further 

shearing, plastic behaviour (permanent volume change) can be seen. Similar concept 

of linear elastic and plastic zones for cohesionless soils based on modulus degradation 

curves was explained in the literatures (Dammala et al., 2015; Hsu and Vucetic, 2004; 

Vucetic, 1995). It is also evident from the Fig. 6a that D decreases with σʹc and in-

creases with γ. Figure 6b depicts that the G/Gmax and D with the γ at different Dr. It 

shows that the Dr has negligible effect on G/Gmax and D, meaning, the compactness of 

the soil specimen doesn’t affect the damping behaviour. Similar trends were also ob-

served for other σʹc, which are not presented here for brevity. 

Table 3. Correlations to evaluate Gmax for Indian and other region sand 
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Note: Gmax = maximum dynamic shear modulus; e = void ratio; σʹc = effective confining pressure; Pa = 

atmospheric pressure  
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Fig. 5. Observed and predicted D at different (a) σʹc (b) Dr (c) Comparison with the proposed 
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Fig. 6. Variation of G/Gmax and D with shear strain for BS sand at different (a) σʹc and (b) Dr 

(after Dammala et al., 2017b) 

4 Cyclic Triaxial Tests 

As RC tests provided the dynamic soil properties up to 0.1% shear strain, proper-

ties over the remaining required range (up to 5%) was obtained using CTX testing. 

Since, Dammala et al. (2017b) conducted the tests on dry cohesionless soil up to γ = 

0.1%, it is not practically justified to use this results of strain range 0.0001% to 0.1%, 

in case of saturated sand. It was reported in the literature (Vucetic and Dobry, 1988; 

Hashash et al., 2016; Kong et al., 2018), that the shear strain of 0.01% is a limiting 

value of volumetric threshold shear strain below which no significant pore water pres-

sure is generated in the saturated cohesionless specimen. Therefore, the consideration 

of low-strain dynamic properties of soil up to γ = 0.01% will not violate the assump-

tion that the dynamic properties of dry and saturated cohesionless soil up to 0.01% are 

nearly same. CTX tests have been used to evaluate the shear modulus and damping 

ratio of BS for high shear strain range i.e. from 0.01% to 5%. The typical stress strain 

behavior of a cyclically loaded soil is expected to follow the hysteresis loop and was 

observed to be asymmetrical (Fig. 7) at shear strains greater than 0.15% (Kumar et al., 
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2017a). This high-strain (>0.01%) dynamic properties of cohesionless soil was taken 

from Kumar et al. (2017a). 
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Fig. 7. A typical asymmetrical hysteresis loop (after Kumar et al., 2017a) 

5 Comparison of BS Results with Other Indian Sandy Soil Data   

Figure 8 presents the variations of G/Gmax and D for wide range of γ (evaluated using 

both RC and CTX) at different σʹc and Dr. Figure 8a shows the comparison of G/Gmax 

of BS with G/Gmax curves suggested in literatures such as Seed and Idriss (1970), 

Ishibashi and Zhang (1993) and Darendali (2001). Seed and Idriss (1970) provided 

broad range of G/Gmax curve for sand, which is commonly used in GRA due to the 

lack of site-specific data (Chatterjee and Choudhury, 2016; Kumar et al., 2017b; Ku-

mar et al., 2018). It can be clearly seen that RC and CT data of BS soil does not fall in 

range proposed by Ishibashi and Zhang (1993) and Seed and Idriss (1970) while con-

sistent with Darendeli (2001) curves at high strains. Figure 8b describes the variation 

of D of BS obtained from RC and CT tests, and, compared with the above discussed 

traditional curves. It can be seen that both RC and CTX data up to γ = 1%, falls in the 

lower range of Seed and Idriss (1970) curve beyond which D decreases. It can also be 

observed from Fig. 8b, that the Ishibashi and Zhang (1993) shows significantly higher 

damping than the estimated damping values, whereas Darendeli (2001) shows the 

lower values of damping at shear strains greater than 0.2%. 

Figure 9 present the variations of G/Gmax (Fig. 9a) and damping (Fig. 9b) with 

shear strain for sands of Indian region. The data other than BS soil was taken from the 

mentioned literatures in Fig. 9. A range in terms of lower and upper bound is provided 

for G/Gmax curve in which all Indian sands accommodate. This upper and lower 

bounds of G/Gmax and D of Indian sands can be useful for the many site-specific engi-

neering applications such as seismic GRA. 
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different σʹc and Dr 

 

6 Conclusions 

In this study, resonant column and cyclic triaxial tests data at different testing condi-

tions are presented to characterize the dynamic behavior of BS soil. Resonant column 

tests were conducted at low strain level whereas, cyclic triaxial tests at higher shear 

strain and the following conclusions were drawn: 

1. Based on the resonant column tests, a new correlation has been proposed to find 

out maximum shear modulus of BS at very low shear strain (~10-4%).  

2. Shear modulus degradation and damping ratio for wide range of shear strain i.e. 

from 10-4 % to 5% has been compared with existing material models, which em-

phasize the importance of site-specific dynamic properties of Indian sandy soil.  

3. PWP variation in cyclic triaxial reflects that the ru decreases with the increase of Dr 

means at higher Dr, higher Nc are required to liquefy the soil specimens for acon-
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stant γ and σʹc. The ru significantly decreases with the increase of σʹc whereas, the 

same is marginally affected, which can be neglected, by Dr for first loading cycles.   

Therefore, the obtained wide strain range dynamic soil properties combined with 

PWP parameters will be highly useful in performing non-linear effective stress GRA 

studies in Northeast India. 
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Fig. 9. Variations of (a) G/Gmax and (b) Damping with shear strain for Indian sandy soils  
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