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Abstract. Seepage through an embankment must be controlled to prevent con- 

cealed internal erosion and migration of fine materials. It is extremely important 

to control the seepage flow and inhibit removal of the soil particles comprising 

the dam body. Modern design practise incorporates this control into the dam de- 

sign through the use of internal filters and adequate drainage provisions. The 

seepage analysis theories proposed by researchers like Casagrande, Schaffernak, 

Dupuit, and Pavlovsky for homogenous earthen dam resting on impervious base 

finds their application in estimation of filter dimension. This paper reports the 

utilization of machine learning in this regard. A large dataset is generated by us- 

ing Schaffernak’s theory for phreatic surface assessment and by varying the gov- 

erning parameters in all possible range that affects the filter dimension. The da- 

taset is used for training in suitable algorithms related to Multilayer perceptron 

(MLP), Random Forest (RF), Support Vector Regression (SVR), Ridge Regres- 

sion (RR) and Xtreme Gradient Boosting (XGBoost) algorithms. The results il- 

lustrated that XGBoost algorithm could potentially be used to estimate filter di- 

mension and exit discharge. These trained models can be used as a ready refer- 

ence solution by the practising engineers, which provides them a preliminary idea 

for designing toe filters. 

 
Keywords: Filter dimension; Machine learning; Random Forest; XGBoost, Non- 

linear regression; Multilayer perceptron 

 

1 Introduction 
 

Seepage is the slow percolation of liquid through porous medium (soil) when water 

moves from higher head to lower head. The water held in the reservoir of earthen dam 

may often lead to the seepage within the body and below the dam. It is mandatory to 

control the content of seeping water which otherwise may lead to the catastrophic fail- 

ure of dam by means of piping and sloughing. Grouting or installation of upstream 

blanket, cut offs and internal filters are some of the methodologies adopted in modern 

practise to control the content of seepage. In the present study, internal filters are taken 

into consideration because of their effectiveness and economy. 

The conventional seepage analysis theory forms the basis for the design of toe-filter. 

The point of intersection of phreatic surface with the downstream slope of the dam or 

the toe of the dam aids in the assessment of filter dimension. The difference in the 
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consideration of phreatic surface and hydraulic gradient forms the basis for proposal of 

several solution for the seepage analysis through body of earthen dam by researcher 

like Casagrande, Schaffernak, Dupuit, and Pavlovsky. The hydraulic gradient i is as- 

sumed as the slope of free surface (dz/dx) in Dupit and Schaffernak solution while Casa- 

grande solution is based on the arc length (ds) and height of elemental strip (dz) (i.e., i 

= dz/ds) which increases the complexity of solution as its difficult to estimate the arc 

length. Further, the phreatic surface assumed by Dupuit’s solution is different from that 

depicted by its mathematical expression i.e., parabolic phreatic surface at entry and exit 

point. Casagrande and Schaffernak solutions make use of parabolic phreatic surface 

throughout the dam cross section. In Palvovsky’s solution, the dam cross section has 

been divided into three zones such that the phreatic surface for first and last zone is 

assumed as linear while the middle zone has parabolic profile. This limits the applica- 

bility of Palvovsky’s solution for most of the practical cases. In the present study, 

Schaffernak’s solution has been adopted for estimating the filter dimension because of 

its wider applicability and easier analysis, the schematic representation of which is 

shown in Fig. 1. 

Fig. 1. Schematic diagram for Schaffernak’s analysis 

 
The result obtained from Schaffernak’s analysis was found to be functions of various 

dam parameters such as the slopes of upstream face (β) and the downstream face (α), 

the ratio of crest width to height of dam (B/Hd), and the ratio of upstream water level to 

the height of dam (H/Hd). A set of total 6860 data has been generated by varying the 

governing parameters in all possible ranges. The present paper describes the application 

of Machine Learning (ML) algorithms to estimate the filter dimension obtained by 

Schaffernak’s analyses. Various ML algorithms namely, Multilayer perceptron (MLP), 

Random Forest (RF), Support Vector Regression (SVR), Ridge Regression (RR) and 

Xtreme Gradient Boosting (XGBoost) were trained using the generated dataset. These 

models accept the dam-related parameters as inputs (as described in the the previous 

paragraph). The outputs obtained from the ML-base analyses comprise the filter dimen- 

sions and exit discharge from filter, namely the ratio of filter height to the height of 

dam [FHN =(L*sin α)/Hd], the ratio of filter width to the base width of dam [FWN=(L*cos 

α)/bd] and the total exit discharge per unit dam length divided by the product of perme- 

ability coefficient and height of the dam [qnD=q/(k*Hd)]. 

 
2 Machine Learning Algorithms 

 
Machine learning is the subset of artificial intelligence which makes use of complex set 
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of algorithms to simulate human learning process and automatically update their 

knowledge from experiences to optimize their functionality. Machine learning algo- 

rithms generally performs two sets of operation namely, classification and regression. 

In recent years, the usage of Machine learning and data-driven approaches increased 

significantly as they had given/shown state-of-the-art results in various field such as 

weather forecasting, image recognition, traffic prediction, medical diagnosis and more. 

The state of art result produced by ML algorithms such as artificial neural nets 

(ANN), Bayesian network (BN), support vector machine (SVM), and RF proves them 

to be best alternative solution for complex iterative geotechnical problems (Zhou et al. 

2019). Chen and Jia (2016) have used logistic model tree (LMT), random forest (RF), 

and classification and regression tree (CART) models for prediction of landslide sus- 

ceptibility in which RF model shows best result. Zhou et al. (2017) used RF algorithm 

for the prediction of surface movement due to construction of tunnel. Mitu et al. (2021) 

used ML algorithms for automation of inversion procedure in SASW to predict shear 

wave velocity profile from dispersion curve. 

The training process offered by conventional computational models such as ANN is 

tedious as the optimal configuration were not previously known and is attained after 

too many iterations (Zhang and Goh 2013). Moreover, it is evident from previous re- 

searches that the machine learning algorithms outperform neural networks when it 

comes to prediction capability. Machine learning offers the acceptance of ANN in terms 

of MLP algorithm. Thus, the MLP model has also been used in the present paper to 

compare its predictive performance relative to other algorithms. The dataset obtained 

from Schaffernak’s solution consist of both input and output; therefore, only the super- 

vised ML algorithms are chosen for training purpose. 

 
2.1 Multilayer Perceptron (MLP) 

Machine learning offers the usage of neural networks in terms of MLP algorithms. The 

working principle of MLP model is similar to that of feed-forward backpropagation 

neural network. The neurons are the basic building block of MLP model. The signals 

received at each input channels of a neuron are multiplied with the corresponding 

connection weight. These weighted inputs are summed up and a bias is added to it. The 

resultant sum is then filtered by activation function to obtain the output for that neuron 

(Fig. 2a). 

(a)  (b) 

Fig. 2. (a) Schematic representation of an artificial neuron (b) Structure of MLP model with 

single hidden layer 
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The network architecture of MLP consists of input layer, output layer and hidden 

layer. The number of hidden layers is flexible and is decided on the basis of complexity 

of dataset. Thus, MLP can be considered as a tool for deep learning. The usage of feed- 

forward backpropagation technique for training purpose optimizes synaptic weight and 

minimizes mean square error in prediction during each iteration. Each neuron in a given 

layer is fully connected to the neurons of next layer. Figure 2b shows the architecture 

of a single hidden layer neural network with n-dimensional input, p hidden neurons and 

k-dimensional output. The wij and hjk represents the connection weight of input layer- 

hidden layer and hidden layer-output layer respectively. 

The input and output for neurons of hidden layer can be formulated mathematically as: 
n 

sinput = w  x + w x + ... + w x =  w x (1) 
j 0 j 0 1 j  1 nj   n ij   i 

i=0 

soutput  = f hidden (sinput  + bhidden ) (2) 

The output for hidden layer is going to act as an input to the output layer. Thus, the 

input and output for neurons of output layer can be formulated as: 
p 

yinput = h soutput + h soutput + ... + h soutput = h soutput (3) 
k 0k 0 1k 1 pk   p jk   j 

j =0 

youtput = f output ( yinput + boutput ) 

The cost or loss function for MLP is defined in terms of mean squared error as: 

L = 
1 
 youtput − ytarget 

2
 

i k 

(4) 

 
(5) 

1 output 
 p

 

 
 

output output 
 2 

Target 

L =    fa 
i      k 

h
jk 

s 
j 

 j =0 

+ bk  − yk 

 
(6) 

 

2.2 Random Forest (RF) 

Random Forest is an ensemble learning technique that makes use of a set of decision 

tree for predictive analysis (Fig. 3a). It follows bootstrapping of sample in which the 

original dataset is split into subsets (with replacement). Each subset is then used to train 

a particular decision tree such that the total number of subset dataset is equal to the 

number of decision tree present in the RF model. The subset dataset consists of random 

number of features that is decided on the basis of hyperparameter max_features, which 

includes auto, sqrt(.), and log(.) functions. Due to this randomness of feature in a subset, 

each tree will be specialized for some particular region while, at the same time, predict 

inaccurately for other regions. The set represents subset of dataset where i varies from 

1 to N (total number of decision tree) and K represents the total numbers of features in 

dataset and ( X ,Y ) corresponds to the original dataset. 

( X i ,Yi ) = (x j , y j ) for  j = 1, 2...K and (x j , y j ) (7) 

Each tree is trained independently with subset dataset. Once the training is being done, 

the RF model predict the result by averaging the prediction of each tree. 

( X ,Y ) 
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(a) (b) 

Fig. 3. (a) Workflow of RF model with n decision trees (b) Schematic diagram of SVR 

 

2.3 Support Vector Regression (SVR) 

Support vector Machines are the statistical learning-based ML tool that can be used for 

both classification and regression. SVM make use of kernel function that maps low 

dimension nonlinear function into higher dimensional space through nonlinear map- 

ping. In higher dimension, SVM classifies the data using appropriate support vector 

classifier. The selection of adequate kernel function is the most crucial step in SVM. In 

general, these four types of kernel functions are most commonly used for practical ap- 

plications: linear, polynomial, radial basis function (RBF), and sigmoid. 
 

e
− x − x 

2
 

 
( xT  x 

 
+ r )

c

 

Radial Basis 

Polynomial 
K ( x , x ) =  

i j (8) 
i   i tanh ( xT  x + r ) Sigmoid 

 
i j 

xi   x j 
 

Linear 

SVR is a regression algorithm whose working principle is similar to Support Vector 

machine (SVM). It is used to predict continuous ordered variable. The main goal in 

SVR is to confine error within a threshold called fit tube or ԑ-insensitive tube, for which 

a function f(x) is defined such that it has at most 𝜀 deviation from actual target output 

yi for all training dataset (Fig. 3b). The data points lying outside the tube are known as 

slack variables and only these points are considered for error estimation. For a given 
set of observation samples (x , y ), (x , y )......(x , y )  Rn  R , let the model 

1 1 2 2 n n 

equation of regression function is: 

f (x) = wT  x + b 

The objective function for SVR can be mathematically formulated as: 

Obj = min 
 1  

 2 + C
n   

( +  * )

 

(9) 

 
(10) 


 2

 
i=1  

where, C is a hyper-parameter that influences trade-off between an approximation error 

and the weights vector norm, and  and  * are the slack variables that represent the 

distance from actual values to the corresponding boundary values of fit-tube. 
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2.4 Ridge Regression (RR) 

Ridge Regression is regularization technique which analyses multiple regression when 

the data suffers from multicollinearity. The existence of linear relationship between 

data points can be understood as multicollinearity, due to which least square cost func- 

tion estimate for training dataset becomes too less i.e., bias is low. However, the same 

becomes too high for new or test data i.e., variance becomes high, which can be reduced 

by adding a penalty term in the least square cost function to limit the squared L2 norm. 

For dataset  ( X ,Y ) , let the independent variable be X  = x1 , x2         , xn , xi   R and the 

dependent variable be  Y = y1 , y2          , yn , yi   R . The model equation for ridge re- 

gression is approximated as: 

yk =  
n 

i 

0 1   k 0 

i=1 

(11) 

where, 1 =  is regression coefficient and 0 is the residual. The mathematical for- 

mulation for ordinary least square cost function is given as: 

L = Y − X 2 −   2 (12) 
 

where, 𝜆 is the penalty term that is also known as alpha coefficient, which reduces the 

model complexity by shrinking the regression coefficient. The optimal value of regres- 

sion coefficient in terms of 𝜆 is given as:  = ( XT  X + I 
)

−1  

X
T
Y

 (13) 

 

2.5 Xtreme Gradient Boosting (XGBoost) 

XGBoost is an ensemble learning technique which is based on decision tree. It involves 

sequential addition of trees in each iteration to the base learning decision tree in order 

to minimize the objective function using the Steepest Gradient Descent method. The 

model equation for the prediction of output by base learning decision tree to final re- 

gression tree can be sequentially expressed as: 

ŷ0  = 0 (14) 

ŷ1  =  f1 ( x1 ) = ŷ0  +  f1 ( x1 ) (15) 

ŷ2  =   f j  ( x j ) = ŷ1  +  f2 ( x2 ) (16) 
j =1 

.... 

ŷT   =   f j  ( x j ) = ŷT −1  +  fT  ( xT  ) (17) 
j =1 

where, T is number of regression trees in model, α is the learning rate (0<α<1), ŷ  
j 

represents the prediction of output using first jth regression trees, and f j ( represents 

the output of jth regression tree. The initial prediction is generally assumed to be zero 

or average of all the outputs. The objective function of XGBoost includes an additional 

regularization term along with conventional loss function which is as follows: 

) 
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Obj =  l ( yi , ŷi ) +  ( ft ) (18) 
i=1 t 

( f ) =  L + 
1 

 w 
2

 
 

(19) 
t 

2
 

Here  l ( y , ŷ ) = ( y  − ŷ )
2   

represents the square loss function,   ( f  ) represents the 
i i i i t 

regularization term that penalizes the complexity of model, γ is the complexity cost of 

introducing additional leaves; L is the number of leaf node in tth tree; λ is L2 regulari- 

zation term on leaf scores; and w 2 is the weight of the kth leaf node. The objective 

function for tth regression tree at ith leaf node can be written as: 

Obj(t ) =  l ( y , ŷ t−1 +  f  ( x )) +  ( f  ) (20) 
i=1 t 

Using Taylor second order approximation, 
L 

(t ) 
(t −1) 

1   2 2  
 Obj =  l  yi , ŷi +  gi  ft  ( xi ) +     hi  ft    ( xi ) +  ( ft ) (21) 

i =1   2  t 

gi =  

 

 
ŷ( t −1) 

l ( y , ŷ(t−1) ) and h 

 

2 

ŷ( t −1) 
l ( y , ŷ(t−1) ) are the first and second order deriva- 

i i 

 

tive of loss function with respect to 

 
( t−1) 

ŷ
i
 

 
. After differentiating Eqn. 21 with respect to 

ft ( ) output of tth regression tree and equating it to zero, the optimal value of output 

for a tth regression tree and corresponding objective function can be given as: 
  

L 
   

L 


2

 

 gi  
1   

  gi  

f = −    i =1   (22) Obj(t )   = −  i =1     +  L (23) t 

 
L 

 2  
L 

 
h

i   
+   h

i   
+   

 i =1   i =1  

The training of model is finished once the objective function for all tree is determined 

and Eqn. 17 can be used to perform a prediction. 

 

3 Data Generation 
 

The dataset used for training and testing the ML models has been generated using 

MATLAB code meant for estimation of filter dimension using Schaffernak’s method. 

The ratio of crest width to height of the dam (B/Hd) has been varied from 0.2 to 1.5 with 

an interval of 0.1. The range has been selected based on the dam configurations en- 

countered by Nakamura and Yamazaki (1988) during the investigation of damaged and 

undamaged earthen dams for irrigation during the 1983 Nihonkai-Chubu earthquake. 

The ratio of upstream water level to height of the dam (H/Hd) has been varied from 0.1 

to 1.0 with an interval of 0.1. The range has been selected as a result of visualization of 

water present on the upstream side of the dam. In the present study, the length of dam 

is considered larger as compare to cross sectional dimensions which confines the prob- 

lem to a plane-strain case. Thus, the cross-sectional dimension plays an eminent role in 

shaping seepage lines through dam. The two parameters defining the cross-section of 

=  

 
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the dams are the angles of upstream and downstream slopes which are acute angle for 

a typical dam configuration. In order to have a better perspective of the variation in the 

outputs, these angles have been chosen in the range of 15º-75º at a regular interval of 

10º. In total, 49 different combinations of upstream and downstream angles have been 

investigated. The variation of (B/Hd) results in 14 dam configurations for each set of 

upstream and downstream angles, giving a total of 686 dam configurations. Further, the 

variation of (H/Hd) in above specified interval and imposing this condition over the 

other inputs gives a total of 6860 dam models. 

Similarly, for validating the model the same code has been used for generation of 

validation dataset. These dataset helps in understanding the prediction accuracy of ML 

models for arbitrary dam configuration and condition. The ratio of crest width to height 

of the dam (B/Hd) has been assigned random 500 values within range of (0.357, 0.826). 

The ratio of upstream water level to height of the dam (H/Hd) has been assigned random 

500 values within range of (0.456, 0.789), the downstream and upstream slopes has 

been assigned random 500 values within range of 15º to 75º. Thus, a total of 500 syn- 

thetic dataset has been generated for assessing the efficacy of ML models. Further elab- 

orations on the chosen ranges of various parameters can be found in preceding literature 

[Anand, 2012; Anand and Dey, 2012] 

 
4 Result and Discussion 

 
The 6860 data-points generated from the Schaffernak’s solution has been split into 

training and testing dataset such that the training dataset comprises of 80% (5488) of 

total data and rest 20% (1372) assigned as test data. The validation of ML algorithms 

has been done using synthetic data (500). Based on XGBoost and RF models, figures 

4-7 shows the typical comparison of output value predicted by ML model with the ac- 

tual value obtained from Schaffernak’s solution for both test as well as synthetic data. 

Similar plots have been obtained from other ML algorithms (MLP, RR and SVR) as 

well, however, they are not presented here for the sake of brevity. 
 

Fig. 4. Comparison between actual and predicted output by XGBoost for test data 

 
Fig. 5. Comparison between actual and predicted output by XGBoost for synthetic data 
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Fig. 6. Comparison between actual and predicted output by RF for test data 

 

Fig. 7. Comparison between actual and predicted output by RF for synthetic data 

 
Table 2. illustrates the performance index of ML algorithms in terms of different 

metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and 

R2 score that were used to measure the predictive performance of each algorithm. MAE 

measures the difference between the actual and predicted value in absolute term, RMSE 

measures the square root of average of squared difference between actual and predicted 

output and R2 (also known as coefficient of determination) measures the amount of 

variance of prediction. For a residual, r = y − y  i (0, n), R2 can be defined as fol- 

r2 

lows: R2 = 1− i  

( y  − y )
2

 

 

(24) 

i 

where, y is average computed over all sample and yi 
is average of sample on each side 

of threshold (splitting node). R2 varies from 0 to 1, value closer to 1 indicate almost 

perfect regression fit and value closer to 0 (or < 0) indicates a poor fit. It is evident from 

Table 2 that XGBoost shows best fitting for test data while Random Forest shows best 

fitting for synthetic data. For the three output entities considered, the R2 score for 

XGBoost model is 1, 1, 1 for test data and 0.91, 0.89,0.90 for synthetic data; while 

Random Forest has R2 score of 1, 1, 0.99 for test data and 0.92, 0.90,0.91 for synthetic 

data. For SVR model, R2 score is 0.36, 0.05, 0.20 for test data and -0.37, -0.5, -0.20 for 

synthetic data which is minimum among all model, thereby indicating its poor fitting 

(Fig. 8). The Root Mean Square Error (RMSE) for XGBoost for all three-output pa- 

rameter is 1.513x10-05, 2.029x10-05, 2.471x10-05 for test data and 2.452x10-05, 1.710×10- 
04, 2.433×10-04 for Random Forest for synthetic data, which is minimum among all the 

ML models (Fig. 9). This observation further justifies that XGBoost performs best for 

test data and Random Forest perform best for synthetic data. On the other hand, for 

SVR, the obtained RMSE is 9.92×10-03, 9.02×10-03, 9.55×10-03 for test data and 

3.904×10-03, 6.165×10-03, 3.114×10-03 for synthetic data, which is maximum among all 

the predictive models, thereby indicating its poor prediction capability. In terms of 
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mean absolute error, MAE (%), the trend is little bit different from what illustrated by 

the other two performance indices (Fig. 10). The MAE (%) for Random Forest model 

is 0.225, 0.199, 0.243 for test data and 1.158, 0.826, 1.194 for synthetic data, which is 

minimum among all models; and for SVR, the obtained MAE (%) is 8.425, 8.487, 7.727 

for test data and 5.839, 7.058, 4.954 for synthetic data, which is maximum among all 

models. The MAE (%) for XGBoost is 0.233, 0.251, 0.273 for test data and 0.12, 0.861, 

1.174 for synthetic data which comes next to those obtained from Random Forest. It is 

interesting to note that both SVR and RR algorithms shows better predictive perfor- 

mance for synthetic data as the RMSE and MAE (%) is lesser for both algorithms for 

synthetic data. On the basis of above performance indices, it can be clearly drawn out 

that XGBoost and Random Forest models are the best model for prediction of filter 

dimension and exit discharge. The predictive performance of XGBoost and RF has been 

further expressed in terms of plot for coefficient of determination (R2) in Figures 11- 

13. The prediction made by XGBoost and RF model is represented by red dotted line 

while the blue dots represent the scatter plot of actual output values. 

 
Table 2. Assessment of model performance on the basis of different metrics 

 

Output    

Parameter 

 
R2 

Test Data                                  

RMSE 

 
MAE (%) 

 
R2 

Synthetic Data                

RMSE 

 
MAE 

                                                                                                                                              (%)  

Model  

 

 

 
L*(sin α)/Hd 

1.00 

1.00 

0.86 

0.67 

0.36 

1.513×10-05 

2.896×10-05 

2.385×10-03 

6.038×10-03 

9.920×10-03 

0.233 

0.225 

3.755 

5.592 

8.425 

0.91 

0.92 

0.45 

0.67 

-0.37 

2.639×10-04 

2.452×10-04 

1.594×10-03 

9.339×10-04 

3.904×10-03 

1.200 

1.158 

3.551 

2.839 

5.839 

XGBoost 

RF 

MLP 

RR 

SVR 

 

 

 

L*(cos α)/Bd 

1.00 

1.00 

0.76 

0.54 

0.05 

2.029×10-05 

2.587×10-05 

2.438×10-03 

5.478×10-03 

9.022×10-03 

0.251 

0.199 

3.737 

4.916 

8.487 

0.89 

0.90 

0.26 

0.302 

-0.5 

1.891×10-04 

1.710×10-04 

7.729×10-04 

1.162×10-03 

6.165×10-03 

0.861 

0.826 

2.170 

3.281 

7.058 

XGBoost 

RF 

MLP 

RR 

SVR 

 

 

 
qnD 

1.00 

0.99 

0.62 

0.37 

0.20 

2.471×10-05 

8.206×10-05 

3.091×10-03 

6.394×10-03 

9.553×10-03 

0.273 

0.243 

3.581 

4.824 

7.727 

0.90 

0.91 

0.21 

0.58 

-0.20 

2.571×10-04 

2.433×10-04 

2.602×10-03 

1.102×10-03 

3.114×10-03 

1.174 

1.194 

4.387 

2.214 

4.954 

XGBoost 

RF 

MLP 

RR 

SVR 
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Fig. 8. Coefficient of determination (R2) for all models for both test as well as synthetic data 

 
Fig. 9. RMSE for all models for both test as well as synthetic data 

 

Fig. 10. MAE for all models for both test as well as synthetic data 

 

Fig. 11. R2 between actual and predicted (XGBoost) for test data 

 

Fig. 12. R2 between actual and predicted (XGBoost) for synthetic data 
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Fig. 13. R2 between actual and predicted (RF) for test data 

 

Fig. 22. R2 between actual and predicted (RF) for synthetic data 

 

5 Conclusion 
In the present study, Machine Learning (ML) models have been proposed for the esti- 

mation of filter dimension and exit discharge based on Schaffernak’s analysis. The pa- 

rameters affecting the filter dimension has been identified out and has been varied in 

all possible range to include all dam configuration and condition. A MATLAB code 

based on Schaffernak seepage analysis theory has been developed for the estimation of 

filter dimension and exit discharge for the above generated dam configuration and con- 

ditions. The filter dimension and exit discharge act as output and all the governing pa- 

rameters act as input for ML models. Several machine learning algorithms such as Mul- 

tilayer perceptron (MLP), Random Forest (RF), Support Vector Regression (SVR), 

Ridge Regression (RR) and Xtreme Gradient Boosting (XGBoost) has been trained and 

tested using the generated dataset and their predictive performance has been further 

analysed using synthetic dataset. XGBoost and RF gives the maximum R2 score for test 

and synthetic dataset respectively, thus making them best options to be used as ML- 

based predictive models for the assessment of filter dimensions. 
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