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Abstract. Vertical component acquisition of Rayleigh wave is the most widely 

used technique for Multichannel Analysis of Surface Wave (MASW). 

Dispersion imaging of the acquired field data is a critical step in determining the 

in-situ shear wave velocity profile by performing in- version analysis. The 

presence of trapped stiff or soft layers is common in real-world situations, and 

identifying such irregularities from disper- sion images is crucial for an accurate 

inversion analysis. It is well known that the presence of a soft or low-velocity 

layer breaks the continuity of the fundamental mode and influences the higher 

modes, i.e., higher modes will carry more energy. However, the presence of a 

trapped stiff layer doesn't affect modes significantly in the dispersion image. In 

the present study, we have investigated the role of trapped stiff layers in the 

dispersion energy of the Rayleigh wave. The sensitivity of the trapped layers 

has been quantified by analyzing the Jacobian matrix. Further, the dispersion 

image of the corresponding synthetic earth profile is generated from the 

seismogram obtained by the standard staggered grid finite-dif- ference 

modeling. This study shows that it is difficult to capture the pres- ence of a 

trapped stiff layer using only the vertical component MASW method. 
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1 Introduction 
 

The multichannel analysis of surface wave (MASW) is widely adopted to obtain shear 

wave velocities of a few top ten meters of the sub-surface. The MASW method is per- 

formed by acquiring Rayleigh wave with different components (vertical or transverse) 

or Love wave[1–3]. However, the vertical component-based MASW is commonly prac- 

ticed among geotechnical engineers. The standard procedure of surface wave analysis 

is performed in three main stages: (i) acquisition of multichannel data, (ii) processing 

of time domain data to develop field dispersion image, and (iii) inversion of field dis- 

persion curves to estimate shear wave velocity profile. The quality of the dispersion 

image greatly influences the accuracy of the inverse analysis, especially when higher 

modes are present. In practice, layered profiles are usually assumed to be regularly 
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dispersive, however this is not always true. Because of the complex irregularities in the 

layered model, the spectral energy distribution in the dispersion image is complicated 

in the real world. The presence of a low-velocity layer (LVL) and a high-velocity layer 

(HVL) or stiff layer are two typical irregularities observed in the layered geological 

model. An LVL refers to a layer whose shear wave velocity is lower than at least a layer 

above it [4]. The low velocity may occur due to the presence of saturated soft clay or 

loose sand type layers, which is widely observed in the near-surface earth profiles. Sim- 

ilarly, HVL is a stiff layer with a shear wave velocity higher than the layers above and 

below it [5]. The presence of a shallow stiff layer is common in the urbanized area. 

The sensitivity of each layer plays a crucial role in inverse analysis. A layer with low 

sensitivity is poorly reconstructed through inversion[6–8]. An MASW survey on an 

LVL type profile develops a discontinuous dispersion image. The soft layer stimulates 

the jumping of modal energy from fundamental mode to higher mode and may not 

return to the fundamental mode[1, 9, 10]. The LVL layers are easily susceptible, and 

their presence is immediately observed in the dispersion image [4]. Thus, an appropri- 

ate inversion scheme can easily reconstruct an LVL model if the higher modes are con- 

sidered. On the other hand, the presence of HVL doesn't always excite the higher 

mode[5, 11]. Dal Moro [5] studied the influence of a thin HVL placed at the surface 

and found no change in the dispersion spectrum due to the stiff surface layer. However, 

the appearance of HVL on dispersion image depends upon several other factors, such 

as depth of embedment, thickness, and velocity contrast of the stiff layer. Shen et al 

[11] found that the HVL is poorly sensitive to the theoretical fundamental mode. Nev- 

ertheless, layer irregularities may excite the higher modes; therefore, it is necessary to 

study the dominant mode or the entire dispersion spectrum. 

This paper investigates the sensitivity of stiff layers on surface wave dispersion 

where the stiff layer with different velocity contrast is positioned at various depths. The 

sensitivity of the soil profile is studied by analyzing the Jacobian matrix, which is a 

partial derivative of Rayleigh wave phase velocity with respect to medium parameters. 

A numerical analysis is performed to observe the distribution of dispersion energy at a 

different frequency. The study shows that the overall sensitivity of the medium reduces 

due to the presence of a stiff layer. The sensitivity of the high velocity stiff layer dras- 

tically decreases with the velocity contrast and depth of embedment. 

 

2 Computation of Sensitivity 
 

For a layered earth model, the wave equation, after applying proper boundary condition 

and free surface condition, turns into a characteristic equation in its nonlinear, implicit 

form [6]: 

 
𝐹(𝑓𝑖, 𝑉𝑅𝑖, 𝑣𝑠 , 𝑣𝑝 , 𝜌 , ℎ) = 0 (𝑖 = 1, 2, 3, … . , 𝑚) (1) 

where 𝑓𝑖 is the frequency in Hz; 𝑉𝑅𝑗 is Rayleigh wave phase velocity corresponding to 
the frequency 𝑓 ; 𝑣 = (𝑣 𝑇is the compressional wave velocity vector; 

𝑖 𝑝 𝑝1 , 𝑣𝑝2, … , 𝑣𝑝𝑛) 
; 𝑣𝑠 = (𝑣𝑠1, 𝑣𝑠2, … , 𝑣𝑠𝑛)𝑇 is the shear wave velocity vector; 𝜌 = (𝜌1, 𝜌2, … , 𝜌𝑛)𝑇 is the 

density vector; 𝑛 is the number of layers and ℎ = (ℎ1, ℎ2, … , ℎ𝑛−1)𝑇. Therefore, the 
four basic parameters can physically define a homogeneous, isotropic, horizontally 
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layered media. Each parameter is uniquely sensitive to the Rayleigh wave’s velocity at 

specific frequencies. However, 𝑣𝑝 and 𝜌 are relatively less sensitive to phase velocity 

compared to 𝑣𝑠. Thus only 𝑣𝑠 is studied by keeping the Poisson's ratio and 𝜌 constant 

or known. 

For a generalized linear inversion process, such as Levenberg-Marquardt (L-M) al- 

gorithm, the sensitivity kernel is essential to determine the adjustment of parameters 

towards convergence of inversion. Thus, equation 1 can be linearized by Taylor series 

expansion [6]: 

𝐉𝑣𝑠
∆𝐯𝐬 = ∆𝐛 (2) 

where, 𝐛 is the Rayleigh wave phase velocity vector, 𝐛 = [𝑏1, 𝑏2, … , 𝑏𝑚]𝑇.∆𝐛 is the 

difference between the observed phase velocity from the dispersion image and the es- 

timated phase velocity of the initial model 𝑣𝑠0. 

∆𝐛 = [(𝑏𝑜𝑏𝑠 − 𝑉𝑅(𝑣𝑠0)) , (𝑏𝑜𝑏𝑠 − 𝑉𝑅(𝑣𝑠0)) , … , (𝑏𝑜𝑏𝑠 
𝑅 

𝑓=𝑓1 
𝑅 

𝑓=𝑓2 
𝑅

 
𝑇 

− 𝑉𝑅(𝑣𝑠0)) ] 
𝑓=𝑓𝑚 

(3) 

∆𝐯𝐬 is the adjustment vector of the initial model 𝑣𝑠0 of length 𝑛. 𝐉𝑣𝑠 is the Jacobian 

matrix or sensitivity kernel (thin and tall matrix) with 𝑚 rows and 𝑛 columns (𝑚 > 𝑛). 

The elements of the Jacobian matrix are the first-order partial derivative of phase 

velocities (𝑉𝑅 ) with respect to shear wave velocities. 
 𝜕𝑉𝑟 𝜕𝑉𝑟 𝜕𝑉𝑟   𝖥 ( ) ( ) ⋯ ( ) 1 

I  𝜕𝑣𝑠1  𝑓=𝑓1 
𝜕𝑣𝑠2  𝑓=𝑓1 

𝜕𝑣𝑠𝑛   𝑓=𝑓1 I 
I   𝜕𝑉𝑟 𝜕𝑉𝑟 𝜕𝑉𝑟 

I 

𝐉 = 
I(

𝜕𝑣   
) (

𝜕𝑣   
) ⋯ (

𝜕𝑣   
) I 

𝑣𝑠 I 𝑠1  𝑓=𝑓2 𝑠2  𝑓=𝑓2 𝑠𝑛   𝑓=𝑓2 I 
I ⋮ ⋮ ⋱ ⋮ I 

I  𝜕𝑉𝑟  𝜕𝑉𝑟   𝜕𝑉𝑟 
I       

I( ) (  ) ⋯ (  ) I 

[  𝜕𝑣𝑠1   𝑓=𝑓𝑚 
𝜕𝑣𝑠2   𝑓=𝑓𝑚 

𝜕𝑣𝑠𝑛  𝑓=𝑓𝑚]𝑚×𝑛 

 

 

 
(4) 

The partial derivatives can be calculated numerically using Ridder's method of pol- 

ynomial extrapolation. 

The sensitivity kernel, 𝐉𝑣𝑠not only decide the parameters updation in inverse analy- 

sis, but also describe the contribution of any layer on the surface wave dispersion. Low 

sensitive layers have less involvement in wave propagation thus they are less suscepti- 

ble to be detected through inverse analysis, which also enhances the non-uniqueness of 

inversion analysis. 

 
3 Numerical Modelling of Surface Wave 

 
It should be mentioned that the sensitivity value of any layer is different for each mode. 

Based on the corresponding soil profile's dispersion image, it is possible to determine 

whether higher modes should be studied or not. Thus, along with the sensitivity kernel, 

this study analyses the dispersion energy of Rayleigh waves using staggered grid finite 
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difference wavefield modeling. Staggered grid methods are widely used for elastic 

wavefield modeling (velocity-stress formulation) because of their high computational 

efficiency and easy implementation [12]. A staggered grid has several advantages over 

an ordinary finite difference method and other numerical methods discussed by Moczo 

[13]. Unlike the conventional finite difference scheme, the displacement/velocity com- 

ponent and each stress component have their own location in the staggered grid formu- 

lation. 

The first-order velocity-stress formulation of the wave equation can be written as: 

𝜕𝑣𝑥  ∂σXX  ∂τXZ 
ρ =  + 

∂t ∂x ∂z 
∂vz  ∂τXZ  ∂σzz 

ρ =  + 
∂t ∂x ∂z 

𝜕𝜎𝑥𝑥 
= (𝜆 + 2𝜇) 

𝜕𝑣𝑥 
+ 𝜆 

𝜕𝑣𝑧
 

𝜕𝑡 𝜕𝑥 𝜕𝑧 
𝜕𝜎𝑧𝑧 

= (𝜆 + 2𝜇) 
𝜕𝑣𝑧 

+ 𝜆 
𝜕𝑣𝑥

 
𝜕𝑡 𝜕𝑧 𝜕𝑥 

𝜕𝑟𝑥𝑧 
= 𝜇 (

𝜕𝑣𝑥 
+ 

𝜕𝑣𝑧
)

 

𝜕𝑡 𝜕𝑧 𝜕𝑥 

 

 

 

 
(5) 

 

where,𝜎𝑥𝑥 , 𝜎𝑧𝑧 are normal stresses, and 𝑟𝑥𝑧 is shear stress; 𝑣𝑥, 𝑣𝑧 are the velocity com- 

ponent in 𝑥 and 𝑧 direction, respectively. The standard staggered grid discretization of 
the Equation 5 is illustrated in Fig1. 

 

  𝜎𝑥𝑥 , 𝜎𝑧𝑧 

𝑣𝑥 

𝑣𝑧 

𝑟𝑥𝑧 

 
 
 

Fig.1. Finite difference staggered grid discretization 

 

4 Sensitivity of Stiff Layers 
 

A six-layer regularly dispersive earth model (Table 1) [6] is taken as a representative 

profile to investigate the stiff layers at different depths. A high velocity stiff layer with 

different velocity contrast is placed at the 2nd,3rd, and 4th layer’s positions in the model 

(Fig 2) and the sensitivity of the different layers is studied using equation 4. Each layer's 

"total relative sensitivity" is calculated by summing up all the normalized sensitivity 

values at each frequency and dividing by the number of frequency samples. The total 

relative sensitivity of any layer describes the layer's overall contribution to the surface 

wave dispersion. 

A 50 Hz Ricker wavelet is used to model the surface hammer blow in the numerical 

simulation. For every soil model, vertical component synthetic data is recorded at 48 
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receiver locations spaced every 1 m. The dispersion image is generated using the phase 

shift transform method [14–16]. 

Table 1. Six-layer subsurface model. 

Layer no S-wave 

velocity 

(m/s) 

Poisson's 

Ratio 

Density 

(kg/m3) 

Thickness 

(m) 

1 194 0.430 1780 2 

2 270 0.396 1820 2.3 

3 367 0.447 1870 2.5 

4 485 0.443 1920 2.8 

5 603 0.439 1980 3.2 

6 740 0.446 2050 ∞ 
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Fig. 1. Stiff layer at different depths, (a) HVL at 2nd layer, (b) HVL at 3rd layer, and (c) 

HVL at 4th layer. 

 
4.1 HVL at the second layer 

The sensitivity kernel of the original profile is shown in Fig 2a. It can be seen that, the 

high frequencies (> 40 Hz) are predominantly influenced by the top layer since the 

shorter wavelengths are confined near the surface, and the low frequencies (<15 Hz) 

are excited mainly by half-space. The middle layers are sensitive to the intermediate 

frequency range (15-40) depending upon their layer parameters. According to the over- 

all sensitivity, the top layer is the most sensitive, and the 5th layer is the least sensitive. 

The corresponding dispersion image is presented in Fig 2b, where the white dotted lines 

are the theoretical modes obtained by the stiffness matrix method [17–19]. It can be 

observed that the fundamental mode dominates almost across all the frequencies. Fig 

2c presents the sensitivity kernel when 𝑣𝑠  of the 2nd layer is increased by 1.36 times to 

make it the same as the 𝑣𝑠 of 3rd layer. It is clearly visible that the sensitivity of the 2nd 
layer drastically reduced, and the energy distribution of the dispersion image also 

changed (Fig 2d). However, the overall sensitivity of the layers is enough to be captured 

(a) (b) (c) 

D
ep

th
 (

m
) 



Mrinal Bhaumik and Tarun Naskar 

TH-4-30 6 

 

 

(c) 

(g) 
(h) 

 

 

 

 

 

 

 
 

Fig. 2. Sensitivity kernel and dispersion image of HVL positioned at 2nd layer, (a) sen- 

sitivity of original profile, (b) dispersion image of original profile, (c) sensitivity of 

HVL of velocity ratio 1.36, (d) corresponding dispersion image, (e) sensitivity of HVL 

of velocity ratio 1.8, (f) corresponding dispersion image, (g) sensitivity of HVL of ve- 

locity ratio 2.23, and (h) corresponding dispersion image. 
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(d) 

(e) 
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through inversion. Fig 2e illustrates the sensitivity kernel when the 𝑣𝑠 is increased by 

1.8 times. It is observed that the overall relative sensitivity is further reduced. The cor- 

responding dispersion image in Fig 2f shows a clear modal energy jumping from fun- 

damental mode to 1st higher mode in a frequency range of 20 to 40 Hz. As the higher 

mode is also excited, the sensitivity of 1st higher mode is calculated. However, it can 

be seen from Fig 2e (right bottom corner) that the 1st layer is more sensitive even for 

higher mode. And more interestingly, the modal energy returns back to the fundamental 

mode, which doesn't happen in the presence of LVL. Similarly, in Fig 2g, the stiff layer 

velocity is increased by 2.23 times, which further reduces the sensitivity. 

The variation of overall sensitivity for different shear wave velocity ratios of the stiff 

embedded layer is shown in Fig 3. The red line corresponds to the stiff layer. 
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1 1.5 2 

Shear wave velocity ratio 

Fig. 3. Variation of total sensitivity at different shear wave velocity ratio of 2nd layer 

 
4.2 HVL at the third layer 

Let's consider the stiff layer is at 3rd layer of the model (Fig 1b). Fig 4a and 4b are the 

sensitivity kernel of the fundamental mode and dispersion images of the original pro- 

file, respectively. Fig 4c shows the sensitivity of the model when 𝑣𝑠 of the third layer 

is increased by 1.32 times. Similar to the results discussed in earlier example, the over- 

all sensitivity of the layers other than the one immediately below the HVL is reduced. 

This model does not exactly represent an HVL model since 𝑣𝑠 of the third layer is iden- 

tical to 𝑣𝑠 of the fourth layer. However, this is studied to observe the influence on sen- 

sitivity. The corresponding dispersion image is plotted in Fig 4d. Compare to the orig- 

inal dispersion image (Fig 4b), no significant change is observed in the spectral energy 

distribution. The 𝑣𝑠 of the third layer is then increased by 1.64 times to make it equal 

to next higher stiff layer. The overall sensitivity of the layers is further reduced (Fig 

4e). However, the dispersion trends are almost similar to the original one. Studying the 

theoretical dispersion curves, a shift in modal osculation point towards high frequency 

is observed. The 𝑣𝑠 of the HVL is further increased to make it same to the next higher 

𝑣𝑠, and the corresponding sensitivity kernel and dispersion image is plotted in Fig 4g 
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Fig. 4 Sensitivity kernel and dispersion image of HVL positioned at 3rd layer, (a) sen- 

sitivity of original profile, (b) dispersion image of original profile, (c) sensitivity of 

HVL of velocity ratio 1.36, (d) corresponding dispersion image, (e) sensitivity of HVL 

of velocity ratio 1.8, (f) corresponding dispersion image, (g) sensitivity of HVL of ve- 

locity ratio 2.23, and (h) corresponding dispersion image. 
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(c) (d) 
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and 4h, respectively. The overall change in sensitivity of individual layer with different 

𝑣𝑠 ratio of the 3rd layer is illustrated in Fig 5. It is observed that the sensitivity of each 

layer decreases with an increase in the stiffness of the stiff layer. Especially, the sensi- 

tivity of HVL (red dotted line) reduces significantly compared to other layers. 
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Fig. 5. Variation of total sensitivity at different shear wave velocity ratio of 3rd layer 

 

4.3 HVL at the fourth layer 

Now the HVL is placed at the 4th layer of the model (Fig 1c) and corresponding sensi- 

tivity kernel and dispersion image are plotted in Fig 6. The velocity of the 4 th layer is 

increased to 603 m/s, which is same as the 5th layer. Comparing the sensitivity kernel 

(Fig 6c) with the original profile’s sensitivity kernel (Fig 6a), it is clear that the overall 

sensitivity decreases. A similar trend is observed when the layer stiffness further in- 

creased by 1.52 times, to make the 𝑣𝑠 same as the next maximum layer. The dispersion 

image of the HVL profiles is almost same as the original profile, although the sensitivity 

of the stiff layer decreases. The comparison of overall sensitivity of each layer at dif- 

ferent shear wave velocity ratio is presented in Fig 7. It can be observed that overall 

sensitivity decreases with the increment of velocity contrast of the stiff layer. Similar 

to the earlier cases, the decrement rate is higher for the stiff layer compare to other 

layers. 
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Fig. 6. Sensitivity kernel and dispersion image of HVL positioned at 4th layer, (a) sen- 

sitivity of original profile, (b) dispersion image of original profile, (c) sensitivity of 

HVL of velocity ratio 1.36, (d) corresponding dispersion image, (e) sensitivity of HVL 
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Fig. 7. Variation of total sensitivity of each layer at different shear wave velocity ratios 

of the HVL placed at the 4th layer. 
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4.4 Discussion and Conclusion 

Local search methods or Jacobian based inversion methods are most commonly used 

in surface wave inversion due to their computational speed. The detectability of any 

subsurface layer through inversion depends on how much a small perturbation of the 

layer properties affects the forward modeling. A layer with high sensitivity has a great 

chance of being easily identified. On the other hand, low sensitive layers don't signifi- 

cantly affect the dispersion energy, so there is a less chance of reconstruction. Irregular 

layers such as LVL and HVL are widely observed in near surface earth models. Ray- 

leigh wave phase velocities are highly sensitive to the LVL. 

This study analyzed the influence of stiff layers on the dispersion characteristics of 

vertical component Rayleigh wave. The sensitivity and dispersion spectrum are studied 

by placing the stiff layer at various depths and changing the velocity contrast. The sen- 

sitivity analysis of the HVL profiles shows that the HVL is poorly sensitive on the 

dispersion spectrum. The sensitivity effects get amplified with the increment of stiff- 

ness contrast of HVL with the neighboring layers. The stiff layers at shallow depth with 

high velocity contrast excide the higher modes at low frequency. Whereas, at high 

depth, the stiff layer doesn’t much affect the energy of the dispersion spectrum. The 

low sensitivity causes an inverted shear wave velocity profile with low confidence. In 

this study only the vertical component of the Rayleigh wave is studied and observed 

that the vertical component is unable to capture the presence of a stiff layer at a deeper 

depth. Further study is needed to understand the stiff layer sensitivity on the transverse 

component of the Rayleigh wave and Love wave. 
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