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Abstract. Deep foundations are conventionally being adopted in construction of 

various structures ranging from bridges to skyscrapers. Bored cast-in-situ piles 

and drilled shafts have become a common choice of deep foundations, especially 

in urban areas, owing to the relatively minimal construction associated noise and 

vibration as opposed to driven pile. However, one of the major shortcomings of 

bored piles is the lower skin and tip resistances due to the installation effects 

(stress relief). In the current practice, empirical or semi-empirical correlations are 

generally adopted for estimating the unit skin friction of bored pile/drilled shafts 

which is not necessarily taking into account the actual soil state around pile sub-

sequent to the installation. Since the soil state (properties and stresses) in the vi-

cinity of pile will be significantly altered due to the installation processes, study-

ing the evolution of soil state during the various construction stages as well as 

the loading stage will aid to estimate the residual confining stress and thus the 

unit skin resistance of pile. This can be made possible using cavity expansion and 

contraction solutions as the stress relaxation during the excavation of hole is anal-

ogous to a cylindrical cavity contraction (unloading) problem and subsequent 

concrete placement and axial loading resemble a cavity re-loading (i.e., expan-

sion) problem. This paper presents a semi-analytical cylindrical cavity contrac-

tion and expansion solution procedure to predict the residual horizontal stress and 

consequently the skin friction of bored pile. The proposed approach was vali-

dated using two well-documented field test data of bored piles/drilled shafts in 

sand. 

Keywords: Horizontal Stress; Unit Skin Friction; Bored Piles; Drilled Shafts; 

Cavity Expansion and Contraction Solutions  

1 Introduction 

Bored piles and drilled shafts are widely used as foundation systems for buildings, 

bridges, transmission towers, signages, retaining structures, etc., because of their min-

imally invasive nature and constructability through hard strata. The skin resistance 
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offered by bored pile primarily depends on the residual stress state in close vicinity to 
the pile during the loading, which is influenced by the installation process and the be-

haviour of the thin layer of soil around the pile (i.e., shear band zone) upon the loading 

[5,11,13]. However, the existing popular methods for predicting unit skin friction such 

as depth-dependent β method [17], FHWA rational method [7], IS code method [9], 

etc., are rather empirical or semi-empirical in nature and do not consider the fundamen-

tal mechanics of the stress state evolution processes. In the recent years, advancements 

have been made in this direction by using numerical approaches coupled with constitu-

tive models [11], computational algorithms [12,13], and using load transfer functions 

to describe pile-soil interaction [25]. Still, all these methods ignore the change in stress 

state caused by the method of construction (dry or wet/slurry methods). 

 

Since the soil state in the immediate locale of the pile will be significantly altered 

during each stage of construction process and loading, tracking the evolution of soil 

state during each stage will enable more realistic prediction of residual confining stress 

and hence the unit skin friction of shaft. The excavation of hole and subsequent concrete 

placement can be considered analogous to cylindrical cavity contraction and expansion 

problems; and further concrete hydration and axial loading are similar to cavity con-

traction and expansion, respectively. A semi – analytical solution procedure, based on 

cylindrical cavity contraction and expansion phenomena, for predicting the residual 

stress state around a shaft in sand and thus its unit skin friction is presented in this paper. 

This solution procedure enables the full incorporation of non-linear soil behaviour dur-

ing the construction and loading phases. The numerical algorithm involves discretiza-

tion of the plastic zone of expanding and contracting cavities to thin cylindrical shell 

elements, similar to that adopted by Salgado and Randolph [19] for steady-state cavity 

expansion case, and an iterative approach is adopted from elastic-plastic boundary to-

wards the cavity wall to determine the stress state and properties of each element. Un-

like self-similarity technique which allows properties to be determined only at the limit 

/steady-state state, this solution procedure enable prediction of entire soil state at any 

stage of expansion or contraction. The validity of this solution approach was verified 

by predicting the response of two well-documented field test data of bored piles in sand. 

2 Evolution of Lateral Stress around Pile  

The ultimate unit shaft friction, fs, along a bored pile in sand at a given depth, z, can be 

expressed as:  

                           𝑓𝑠 = 𝜎ℎ𝑓′ tan 𝛿′ = 𝐾 𝜎𝑣𝑜′ tan 𝛿′ =  𝛽 𝜎𝑣0′                                  (1) 

 

Where, 𝜎ℎ𝑓′ - effective horizontal stress at failure; 𝛿′ - soil-shaft interface friction angle, 

generally assumed to be equal to the angle of internal friction of soil (ϕ'),  K - coefficient 

of lateral earth pressure; and 𝜎𝑣0′ - initial effective vertical stress. The term, K tan 𝛿′ is 

collectively expressed as β [16] in all the “β-methods” available in literature. The ef-

fective horizontal stress at failure (𝜎ℎ𝑓′ ) can be expressed as: 𝜎ℎ𝑓′ = 𝜎ℎ0′ +  ∆ 𝜎ℎ
′ ; where 

𝜎ℎ0′ is the initial effective horizontal stress and ∆ 𝜎ℎ′ is the stress change due to the 
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installation processes (drilling, concreting and hardening) and axial loading of pile. The 

initial effective horizontal stress can be obtained as 𝜎ℎ𝑜
′ = ⌈(1 − sin𝜙′)𝑂𝐶𝑅sin𝜙

′
 ⌉ 𝜎𝑣𝑜

′  

[14]. The stress history of surrounding soil (i.e., variation of 𝜎ℎ′) can be captured by 

modelling the entire process of bored pile construction and loading with the aid of cy-

lindrical cavity contraction and expansion theories as illustrated in Fig. 1.  

 

 

Fig. 1. Pile construction and loading – cavity contraction/expansion analogy (a) Cavity-contrac-

tion/expansion curves; (b) Excavation (contraction); (c) Concrete placement (expansion); (d) 

Dormant period of hydration (contraction); and (e) Axial loading  

Typical cavity pressure –contraction/expansion response during the different stages 

of construction and axial loading is schematically depicted in Fig. 1a. During the first 

stage of construction, i.e., excavation of hole of radius a0, the surrounding soil deforms 

inward slightly (contraction from a0 to ae); thus, allowing the transfer of radial stress to 

hoop stress around the hole through arching (Fig. 1a and 1b). The effective radial stress 

(pe') at the hole wall is given by,  

                  𝑝𝑒
′ = {

0                                                                      for dry method
𝛾𝑏ℎ𝑏                           for wet method, above water table
𝛾𝑏ℎ𝑏 − 𝛾𝑤ℎ𝑤            for wet method, below water table

               (2) 

Where, 𝛾𝑏 and 𝛾𝑤 are the unit weight of slurry (mineral or polymer) and water, respec-

tively; hb is the height of slurry column above the point under consideration; and hw is 

the height of water table above the point under consideration. The cavity contraction 

may be purely elastic or elastic-plastic with the formation of a reverse plastic zone 
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(radius = Re) based on the magnitude of unloading (Fig. 1b), which depends upon the 

depth under consideration, location of water table, method of construction (wet or dry), 

etc.  

 

The placement of fresh concrete in the shaft hole increases the lateral pressure on 

the cavity wall and displaces the cavity wall outward slightly (i.e., expansion from ae 

to ac; Fig. 1c) with the development of plastic zone (Rc). Though different approaches 

are available, predicting the lateral pressure exerted by fresh concrete is very complex 

as it depends on several factors such as intrinsic properties of the materials, mix pro-

portions, consistency, slump, placement rate, length and diameter of shaft, temperature, 

among others [2,3,10,21]. Lings et al. [10] found that variation of lateral concrete pres-

sure with depth is in conformity with the fluid concrete hydrostatic line down to certain 

depth, known as critical depth (ℎ𝑐𝑟 ≈
1

3
 × depth of excavation), below which it follows 

the slope of slurry pressure line. Accordingly, lateral pressure (pc) exerted on the wall 

at a depth (z) immediately after the concrete placement can be obtained as: 

                    𝑝𝑐 = {
𝛾𝑐  𝑧                                                 for 𝑧 ≤  ℎ𝑐𝑟
(𝛾𝑐 − 𝛾𝑏)ℎ𝑐𝑟 + 𝛾𝑏 𝑧                    for 𝑧 >  ℎ𝑐𝑟  

                        (3) 

For the location below water table, effective lateral pressure, 𝑝𝑐 ′ = 𝑝𝑐 − 𝛾𝑤ℎ𝑤 . 

 

It has been reported by several researchers [1-5,10] that concrete lateral pressure 

decreases with time during the hydration of concrete. This is attributed to the physical 

restructuring of solid particles (thixotropy) and the increase of internal friction as well 

as the autogenous and drying shrinkage effects [2,3,5]. The drop in lateral pressure 

during the plastic stage of cement hydration (i.e., dormant period) is reported to be 

predominantly due to the physical effect, which is related to the coarse aggregate con-

centration in concrete [2,3]. This drop in lateral concrete pressure causes cavity con-

traction (from ac to ap) and decreases the horizontal stresses around the pile (Fig. 1d). 

By the end of dormant period, the concrete skeleton becomes relatively rigid [2,3] and 

further contraction during the accelerated stage of cement hydration (i.e., after dormant 

period) is expected to be negligible even though the internal pressure within concrete 

drop to zero. Assaad and Khayat [2] have observed a concrete pressure drop of 40 - 

50% during the dormant period in their experimental study.  

 

Finally, during the axial loading phase, shear strains develop in soil surrounding the 

shaft owing to the vertical displacement of the shaft [7,11]. These shear strain tend to 

be prevalent within a thin cylindrical shear band of thickness, ts, formed around the pile, 

which depends upon the soil gradation; typically, in the range of 5-20 times the mean 

grain size, D50 [21,22]. During the loading, the pile and shear band is considered to-

gether as an indefinite cylinder with initial radius (rpf = ap + ts), which undergoes a 

radial expansion/displacement of u that depends on the dilation potential of the soil 

(Fig. 1e). The magnitude of this radial displacement (u) is given by [13]: 

                                                𝑢 = 𝑡𝑠 tan𝜓
′  
𝛶𝑐𝑠

2
                                                      (4) 
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Where, ψ' is the dilation angle of soil and γcs is the shear strain to attain critical state.  

 

During the axial loading, as the shear band expands, the surrounding soil deforms 

elastically until the onset of plastic yielding at the cavity wall (rpf) and beyond that, a 

plastic zone is formed around the cavity, the radius of which (Rp) increases with further 

loading (Fig.1e). The maximum radial stress generated at the outer boundary of shear 

band during the loading stage, which is influenced by the residual soil state subsequent 

to the pile installation, governs the ultimate unit skin resistance of pile at that depth. 

The proposed cavity contraction and expansion solutions procedure for the same is de-

scribed below. 

3 Cylindrical Cavity Contraction and Expansion Solutions 

3.1 Equilibrium Equation, Yield Criterion, and Flow Rule 

The stress equilibrium around a cylindrical cavity can be expressed as:                                                              

                                                          
𝑑𝜎𝑟

′

𝑑𝑟
+ 
𝜎𝑟

′ − 𝜎𝜃
′

𝑟
= 0                                                  (5)  

Where, σr' and σθ' are the effective radial and hoop stresses. It is assumed that pore 

water pressure (pw) remains constant throughout the installation and loading; i.e., 
𝑑𝑝𝑤

𝑑𝑟
=

0. The conventional geomechanics sign convention of compressive stresses and strains 

as positive is adopted here. The Mohr-Coulomb yield criteria for loading and unloading 

are given by Eqs. (6) and (7), respectively. 

                                                                  𝜎𝑟
′ = 𝜎𝜃

′ 𝑁                                                             (6)  

                                                                  𝜎𝜃
′ = 𝜎𝑟

′ 𝑁                                                             (7)  

Where, N is the flow number; 𝑁 = 
1+sin 𝜙′

1−sin 𝜙′
 . The friction angle (ϕ') of soil within the 

plastic zone of an expanding and contracting cavity vary with the volumetric plastic 

strain, which is assumed to vary according to the Bolton (1986) model [6] for sand:                              

              𝜙𝑖𝑗 ′ =  𝜙𝑐 ′ + 𝐷𝜓 {𝐼 𝐷𝑖𝑗
[𝑄 + ln(

𝑝𝑎
100 𝑝𝑖𝑗 ′

)] − 𝑅𝑄}                         (8)  

Where, 𝜙𝑖𝑗 ′ is the friction angle within a thin shell element, ij (Fig. 1b); 𝜙𝑐 ′ is the 

critical state friction angle; 𝐼 𝐷𝑖𝑗
 is the relative density within element, ij; 𝑝𝑎 is the ref-

erence stress = 100 kPa; 𝑄 and 𝑅𝑄 are fitting parameters (Q ≈ 10 and R ≈ 1); 𝑝𝑖𝑗 ′ is the 

mean effective stress within element, ij; and 𝐷𝜓 = 3 for triaxial test and 5 for plane 

strain test. The dilatancy (ψij') and friction angles are assumed to hold the relationship 

given by Bolton [6]: 
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                                                     𝜓𝑖𝑗
′ = 

𝜙𝑖𝑗
′ − 𝜙𝑐 ′

0.8
                                                              (9)  

A non–associated flow rule proposed by Zhang and Salgado [24] for Mohr-Coulomb 

soils is assumed to hold true:  

                                                          𝑁𝑖𝑗 = 𝑁𝑐𝐷𝑖𝑗                                                                   (10)  

Where, Nij is the flow number within element, ij; Nc is critical state flow number; and 

Dij is the strain rate ratio within ij given by: 

                                                      𝐷𝑖𝑗 = 1 − (
휀�̇�
휀1̇
)                                                                 (11) 

Where, 휀�̇� is the volumetric strain rate = 휀𝑣
(𝑖) − 휀𝑣

(𝑗) and 휀1̇  is the major principal 

strain rate = 휀1
(𝑖) − 휀1

(𝑗); for expansion, 휀1̇ = 휀�̇�  and for contraction, 휀1̇ = 휀�̇� . The 

strain components are defined as logarithmic strains to account for large strain in the 

plastic zone: 

           

휀𝑟
(𝑖) = − 𝑙𝑛 (

𝑟𝑗 − 𝑟𝑖
(𝑟𝑗 − 𝑢𝑗) − ( 𝑟𝑖 − 𝑢𝑖  )

) ;      휀𝜃
(𝑖) = − 𝑙𝑛 (

𝑟𝑖
 𝑟𝑖 − 𝑢𝑖  

) ;         

휀𝑣
(𝑖)
= − 𝑙𝑛(

𝑟𝑗
2 − 𝑟𝑖

2

(𝑟𝑗 − 𝑢𝑗)
2
− (𝑟𝑖 − 𝑢𝑖)2

)
}
 
 

 
 

    (12) 

3.2 Numerical solution procedure  

For obtaining the evolution of soil state during the various stages of bored pile con-

struction and loading, which will aid to estimate the residual confining stress around 

pile, an elaborate numerical procedure is adopted and is briefed below: 

(i)  Select required input parameters: a0, p0' = σh0', ID0, ϕc', ts, γcs, and shear modulus, G. 

Excavation of Shaft Hole.  When the internal pressure decreases from p0', unloading 

happens; which will be purely elastic until reverse yielding occurs. The cavity pressure 

at the beginning of reverse yielding (pr') is: 

                                          𝑝𝑟 ′ =
𝑝0′(𝑁 + 1)  

𝑁(𝑁 + 1)
                                                             (13)  

(ii)  If the effective radial stress after excavation (pe') is greater than pr', the correspond-

ing contracted cavity radius (ae) and radial and hoop stress fields around the cavity can 

be calculated as: 

                                                𝑎𝑒 = 𝑎0 (1 + 
(𝑝𝑒 ′ − 𝑝0′)

2𝐺
)                                                 (14) 

𝜎𝑟′ = 𝑝0
′ + (𝑝𝑒

′ − 𝑝0
′) (
𝑎𝑒
𝑟
)
2

;      𝜎𝜃′ = 𝑝0
′ − (𝑝𝑒

′ − 𝑝0
′) (
𝑎𝑒
𝑟
)
2

(15) 



 

Theme 3  75 

Proceedings of Indian Geotechnical Conference 2020 

December 17-19, 2020, Andhra University, Visakhapatnam 

If pe' < pr', the plastic unloading happens and a reverse plastic zone forms around the 

cavity. The accurate determination of stress and strain fields around the cavity consid-

ering the effect of volumetric plastic strain requires cavity radius (ae) or the plastic 

radius (Re) be known. However, since both ae and Re are initially unknown, a recursive 

approach with the assumed plastic radius is adopted to obtain the actual ae and Re and 

thus to estimate the variation of soil properties and stress state within the plastic zone 

concurrently. For each assumed plastic radius, plastic zone is discretized into thin ele-

ments and an iterative approach beginning from the elastic-plastic boundary is em-

ployed as summarized below: 

 

(iii) Assume a reverse plastic radius, Re1. Divide this plastic zone into thin shell ele-

ments (ij), each of thickness dr, where j marks the outer boundary of each element. The 

first element is considered close to boundary with inner radius, ri = rj – dr and outer 

radius, rj = Re1, where the entire soil state is known: 

 

                                

𝜎𝑟𝑗 ′ =   𝑝𝑟′ =  𝜎𝑅′ ;    𝜎𝜃𝑗′ =  𝜎𝑅′ . 𝑁𝑝

휀𝑟
(𝑗)
= −(𝑝0′ − 𝜎𝑅′) / 2𝐺;  휀𝜃

(𝑗)
= −휀𝑟

(𝑗)

휀𝑣
(𝑗)
= 휀𝑟

(𝑗)
+ 휀𝜃

(𝑗)
  and   𝑢𝑗 =  휀𝜃

(𝑗)
 . 𝑅𝑒1

 }                              (16) 

 

The friction angle of this first element (ϕij') is considered same as that at rj for initial 

iteration and then: 

•   Determine the inner radial stress (𝜎𝑟𝑖′) using Eq. (17), which is obtained by com-

bining Eqs. (5) and (7). Subsequently, determine inner hoop stress (𝜎𝜃𝑖 ′) using Eq. (7) 

and mean stress (𝑝𝑖𝑗
′) for the element by Eq. (18), obtained by modifying Davis (1968) 

equation [8] to apply for the unloading case.  

                                                     𝜎𝑟𝑖 ′ =  𝜎𝑟𝑗′.  (
𝑟𝑗
𝑟𝑖
)
(1−𝑁𝑖𝑗)

                                                   (17) 

 

                𝑝𝑖𝑗 ′ =
1

3
.  [�̅�𝑟 (1 + 𝑁𝑖𝑗)(1 + 𝜇𝑖𝑗) ]                                   (18) 

 

Where, �̅�𝑟 - average radial stress for the element and μij = 0.5 (1+ sin ϕij'. sin ψij '). 

• By substituting Eq. (12) in Eq. (11), an expression with inner radial displacement, ui 

as the only unknown is obtained (Eq.19), where Dij is obtained from Eq. (10). Solve 

Eq. (19) for ui using numerical method (e.g., Newton Raphson method). 

휀𝑣
(𝑗)
+ ( 𝐷𝑖𝑗 − 1)휀𝜃

(𝑗)
= ln {[

(𝑟𝑗 − 𝑢𝑗)
2
− (𝑟𝑖 − 𝑢𝑖)

2

𝑟𝑗
2 − 𝑟𝑖

2
] .  [

𝑟𝑖 − 𝑢𝑖
𝑟𝑖

]
(𝐷𝑖𝑗 

−1)

}   (19) 

• Estimate the radial, hoop, and volumetric strains (εr
(i), εθ

(i) and εv
(i)) using Eq. (12). 

Subsequently, using εv
(i), calculate a new void ratio (eij) and hence relative density (𝐼𝐷𝑖𝑗) 

of the element from which the new ϕij' can be obtained using Eq. (8). 
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• The above steps are iterated to obtain sufficient convergence for ϕij'. All the param-

eters at inner boundary 'i' will be thus obtained, which will be the outer boundary (j) 

for the next element inwards.  

(iv) Repeat Step (iii) for the next element and proceed element by element inwards. 

After achieving convergence for each element, ri – ui is compared with the initial cavity 

radius (a0). If ri – ui > a0, carry forward with the next element; whereas, if ri – ui ≈ a0, 

cavity wall has been reached. 

(v) Check if the difference between estimated cavity stress, 𝜎𝑟𝑖' and pe' (Eq. 2) is satis-

factorily small. If not, repeat the above Steps (iii and iv) by gradually incrementing the 

plastic radius as Re2, Re3, …, Ren until 𝜎𝑟𝑖' ≈ pe'. This iterative procedure will simultane-

ously give the stresses, strains and the varied soil properties within the plastic zone 

corresponding to the effective cavity pressure of pe'. 

 

Concrete placement.  Cavity expansion resulting from concrete placement is consid-

ered here. The effective lateral pressure immediately after the concrete placement (pc') 

will certainly exceed the minimum pressure to cause plastic yielding (𝑝𝑦′ =

 
𝑝𝑒′(𝑁+1)  

𝑁(𝑁+1)
). The numerical procedure followed is similar to that adopted for plastic con-

traction and is summarized below: 

 

(vi) Consider a plastic radius, Rc1, greater than ae. Divide this plastic zone into thin shell 

elements (ij), each with thickness dr. 

 

(vii) The stresses, strains and radial displacement values (σR', σθ', εR, εθ and uR) at Rc1 

can be determined using Eq. (20) as follows: 

 

                                        𝜎𝑅′ =  
2 𝑁  𝜎𝑟𝑒 ′

1 + 𝑁
; 𝜎𝜃′ =  

𝜎𝑅′

𝑁
 ; 휀𝑅 = 

 𝜎𝑅′ −  𝜎𝑟𝑒 ′

2𝐺
       

휀𝛳 = − 휀𝑅;   𝑢𝑅 = − 휀𝛳 .  𝑅𝑐1

}           (20)                  

Where, σre' and N are the radial stress and flow number at Rc1 following excavation. 

(viii) The first element (ij) is considered with the outer boundary rj = Rc1 and ϕij' of the 

element is initially assumed to be the same as that at Rc1 at the end of excavation phase. 

• Determine 𝜎𝑟𝑖
′ utilizing Eq. (21) (obtained by combining Eqs. 5 and 6), 𝜎𝜃𝑖

′ using 

Eq. (6) and pij' by Eq. (22); Davis (1968) equation [8,19]: 

                                                          𝜎𝑟𝑖 ′ =  𝜎𝑟𝑗′ (
𝑟𝑗
𝑟𝑖
)

𝑁𝑖𝑗−1

𝑁𝑖𝑗
                                                   (21) 

 

                                         𝑝𝑖𝑗 ′ =   
1

3
 [�̅�𝑟  (1 + 

1

𝑁𝑖𝑗
) (1 + 𝜇𝑖𝑗)]                                        (22) 
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• Obtain ui by solving Eq. (23); derived by plugging Eq. (12) in Eq. (11).  

휀𝑣
(𝑗)
+ ( 𝐷𝑖𝑗 − 1)휀𝑟

(𝑗)
= ln {[

(𝑟𝑗 − 𝑢𝑗)
2
− (𝑟𝑖 − 𝑢𝑖)

2

𝑟𝑗
2 − 𝑟𝑖

2
] .  [1 +

𝑢 𝑖 − 𝑢𝑗

𝑟𝑗 − 𝑟𝑖
]

(𝐷𝑖𝑗−1)

}     (23) 

• Estimate the radial, hoop and volumetric strains (εr
(i), εθ

(i) and εv
(i)) using Eq. (12). 

Subsequently, using εv
(i), calculate a new void ratio (eij) and hence relative density (𝐼𝐷𝑖𝑗) 

of the element from which the new ϕij' can be obtained using Eq. (8). 

• The above steps are iterated to obtain sufficient convergence for ϕij'. This iterative 

process yields all the parameters at the inner face of the element (i). 

 

(ix) Go to the next element and follow Step (viii). Once convergence is achieved for 

each element, ri - ui is compared with ae. If ri – ui > ae, proceed to the next element. If 

ri – ui ≈ ae, cavity wall has been reached and corresponding new cavity radius, ac = ri.  

(ix) Compare the computed cavity pressure (σri') with pc' (Eq. 3); if the difference is 

not adequately small, repeat the above steps by increasing the plastic radius in small 

increments (Rc2, Rc3…., Rcn) until the close agreement is achieved. Corresponding to pc', 

the distribution of stresses, strain, and soil properties within the plastic region will be 

known. 

Plastic phase of Concrete hydration. Drop of pressure during the dormant period of 

concrete hydration will cause inward deformation of the surrounding soil (i.e., cavity 

radius reduces from ac to ap). The variation of stresses and strains with the radial dis-

tance at the end of pressure drop can be obtained using the procedure adopted for ex-

cavation.  

Axial loading. During axial loading, the pile and shear band is considered to form a 

cylindrical cavity with initial radius (rpf = ap + ts), which will be displaced through a 

radial distance, u (Eq. 4). The procedure adopted for modelling the concrete placement 

can be utilized here to obtain the soil state (stresses, strains, and soil properties) corre-

sponding to the full expansion of shear band. 

4 Results and Discussions 

4.1 Comparison with the Experimental Results 

Two well-documented field load test results of bored pile /drilled shaft were utilized 

for the validation of the proposed approach. A shear band thickness (ts) of 5D50 was 

adopted for the prediction. Unit weight for bentonite slurry and concrete was assumed 

as 10.1 kN/m3 and 24 kN/m3, respectively. A pressure drop of 50 % during the dormant 

period of concrete hydration is assumed here [2]. The first case is an axial load test data 

on drilled shaft (TS2; length, L = 5.5 m and diameter, D = 1.22 m) in typical Florida 

sand reported by Thiyyakkandi et al. [20]. The soil in test site was predominantly sand 

with silt (SP-SM) with a thin layer of clay (0.75 m) on top. The water table at the time 

of load testing was 1.8 m below the ground surface. The β profile for the shaft was 
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produced by the proposed approach using the following input parameters [15,20]: D50 

= 0.16 – 0.2 mm; emax = 0.80; emin = 0.43; G (kPa) = 8000 + 650.z (z- depth; estimated 

from pressuremeter test); γcs = 160%; top sand layer (0.75 – 3.80 m): ϕc' = 310, ID0 = 

40% and bottom sand layer (3.80 – 5.50 m): ϕc' = 340, ID0 = 50%. Figure 2a displays the 

experimental and predicted β values (for D50 of 0.16 mm and 0.2 mm).  

 

Fig. 2. Comparison of predicted vs. experimental β values (a) Thiyyakkandi et al. [20]; (b) Viana 

da Fonseca and Santos [23] 

The second case is a bored pile load test data reported by Viana da Fonseca and 

Santos [23]. The pile (L = 6 m and D = 0.6 m) was bored in saprolitic granite soil, which 

extended up to 20 m below the ground surface. The water table was located 10 m below 

the ground surface. The soil parameters considered for the prediction are as follows 

[13,23]: D50 = 0.10 – 0.25 mm; G0 (MPa) = 120 + 5.z; G = 0.5 G0; γcs = 60%; ϕc' = 320, 

ID0 = 40%; emax ≈ 0.90 and emin ≈ 0.60 (estimated from D50 using the correlations pro-

posed by Patra et al. [18]). The comparison between the predicted β profiles (for D50 = 

0.10 mm and 0.25 mm) and experimental results is shown in Fig. 2b. It can be seen 

from Fig. 2 that the predicted range of β values are consistent with the experimental 

data, except some deviation in second case and this signifies good predictive capability 

of the presented approach. 

4.2 Stress distribution around shaft 

Figure 3 shows the predicted stress state around Shaft TS2 [20], at a depth of 2.55 m. 

The stress state around the pile at different stages of installation and testing can be 

effectively predicted as shown. The different stages considered are: (a) in-situ k0 con-

dition; (b) excavation of shaft hole stabilized using bentonite slurry; (c) concrete place-

ment; (d) plastic stage of concrete hydration; and (e) axial load test.  
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Fig.3. Residual horizontal stress around a shaft at different stages of pile installation and loading 

(for Shaft TS2 at 2.55 m depth; Thiyyakkandi et al. [20]) 

5 Conclusion 

This paper has presented a semi-analytical approach in the framework of cavity con-

traction and expansion theories for tracking the evolution of stress state around a drilled 

shaft / bored pile during different stages of construction and axial loading. Unlike the 

existing self-similarity-based techniques, the presented solution enables prediction of 

soil state at any stage of expansion/contraction, incorporating the effect of volumetric 

plastic strain on the soil properties and stresses, throughout the plastic zone. The state 

of soil around a pile, which is significantly altered by the installation processes (exca-

vation, concrete placement, and hydration) as well as the loading, could be captured 

using the presented method. The predictive capability of this solution method was val-

idated by reproducing the two well-documented experimental results on drilled shafts / 

bored piles.  

References 

1. Alexandridis, A., & Gardner, N. (1981). Mechanical behaviour of fresh concrete. Cement 

and Concrete Research, 11(3), 323-339. 

2. Assaad, J. J., & Khayat, K. H. (2006). Effect of mixture consistency on formwork pressure 

exerted by highly flowable concrete. Journal of materials in civil engineering, 18(6), 786-

791. 

3. Assaad, J., & Khayat, K. H. (2004). Variations of lateral and pore water pressure of self-

consolidating concrete at early age. ACI Materials Journal, 101(4), 310-317. 

4. Assaad, J., Khayat, K. H., & Mesbah, H. (2003). Variation of Formwork Pressure with 

thixotropy of Self-Consolidating Concrete. ACI Materials Journal, 100(1), 29-37. 

15

20

25

30

35

40

45

50

0.5 2.5 4.5 6.5 8.5

R
es

id
u

al
 h

o
ri

zo
n

ta
l 

st
re

ss
 (

k
P

a)

r / a0

k₀ condition

Excavation

Concrete placement

Concrete hydration (dormant period)

Axial loading



Alpha Lukose and Sudheesh Thiyyakkandi 

 

Theme 3  80 

5. Bernal, J. B., & Reese, L. C. (1983). Study of the lateral pressure of fresh concrete as related 

to the design of drilled shafts. No. FHWA/TX-84/45+ 308-lF, University of Texas at Austin., 

Center for Transportation Research. 

6. Bolton, M. D. (1986). The strength and dilatancy of sands. Geotechnique, 36(1), 65-78. 

7. Brown, D. A., Turner, J. P., Castelli, R. J., & Americas, P. B. (2010). Drilled shafts: 

Construction procedures and LRFD design methods. United States. Federal Highway 

Administration. 

8. Davis, E. H. (1968). Theories of Plasticity and Failure of Soil Masses. In I. K. Lee., Chapter 

6, Soil-Mechanics—Selected Topics (pp. 341-380). London: Butterworths. 

9. IS 2911(Part 1 / Sec 2). (2010). Design and construction of pile foundations. Bureau of 

Indian Standards, New Delhi. 

10. Lings, M. L., Ng, C. W., Nash, D. F., & 108., C. R. (1994). The lateral pressure of wet 

concrete in diaphragm wall panels cast under bentonite. 107(3), 163-172. 

11. Loukidis, D., & Salgado, R. (2008). Analysis of the shaft resistance of non-displacement 

piles in sand. Geotechnique, 58(4), 283-296. 

12. Mascarucci, Y., Miliziano, S., & Mandolini, A. (2014). A numerical approach to estimate 

shaft friction of bored piles in sands. Acta Geotechnica, 9(3), 547-560. 

13. Mascarucci, Y., Miliziano, S., & Mandolini, A. (2016). 3M analytical method: evaluation of 

shaft friction of bored piles in sands. Journal of Geotechnical and Geoenvironmental 

Engineering, 142(3), 04015086. 

14. Mayne, P. W., & Kulhawy, F. H. (1982). Ko- OCR Relationships in Soil. Journal of the Soil 

Mechanics and Foundations Division, 108(6), 851-872. 

15. McVay, M., Bloomquist, D., & Thiyyakkandi, S. (2014). Field Testing of Jet-Grouted Piles 

and Drilled Shafts (BDK75-977-41). Tallahassee, FL.: Final report submitted Florida 

Department of Transportation. 

16. Meyerhof, G. G. (1976). Bearing capacity and settlement of pile foundations. J. Geotech. 

Eng. Div., 102(GT3), 197–228. 

17. O’Neill, M., & Hassan, K. (1994). Drilled Shafts: Effects of construction on performance 

and design criteria. Proc., Int. Conf. Des. Constr. Deep Founds. Orlando, FHWA, 1.  

18. Patra, C., Sivakugan, N., & Das, B. (2010). Relative density and median grain-size 

correlation from laboratory compaction tests on granular soil. International journal of 

geotechnical engineering, 4(1), 55-62. 

19. Salgado, R., & Randolph, M. (2001). Analysis of cavity expansion in sand. International 

Journal of Geomechanics , 1(2), 175-192. 

20. Thiyyakkandi, S., McVay, M., Lai, P., & Herrera, R. (2016). Full-scale coupled torsion and 

lateral response of mast arm drilled shaft foundations. Canadian Geotechnical Journal, 

53(12), 1928-1938. 

21. Uesugi, M., Kishida, H., & Tsubakihara, Y. (1988). Behavior of sand particles in sand-steel 

friction. Soils and foundations, 28(1), 107-118. 

22. Vardoulakis, I., & Sulem, J. (1995). Bifurcation analysis in geomechanics. London: Blackie 

Academic and Professional. 

23. Viana da Fonseca, A., & Santos, J. (2008). Behaviour of CFA, Driven and Bored Piles in 

Residual Soil. International Prediction Event-Experimental Site-ISC'2. FEUP/IST, Portugal. 

24. Zhang, J., & Salgado, R. (2010). Stress-dilatancy relation for Mohr-Coulomb soils following 

a non-associated flow rule. Geotechnique, 60(3), 223-226. 

25. Zhang, Q.-q., Feng, R.-f., Yu, Y.-l., Liu, S.-w., & Qian, J.-g. (2019). Simplified approach 

for prediction of nonlinear response of bored pile embedded in sand. Soils and Foundations, 

59(5), 1562-1578. 

 


